
Math 410 Topics in Quantum information science C.K. Li

1. Quantum states

1. Let Mm,n be the set of m× n complex matrices, and let Mn = Mn,n.

2. Quantum states are density matrices, i.e., positive semidefinite matrices with trace 1.

3. Let Dn be the set of density matrices in Mn.

4. Pure states are rank one quantum states, i.e., rank one orthogonal projections.

5. For quantum states A and B in Mn and Mm their tensor state is

A⊗B = (aijB) ∈Mn ⊗Mm ≡Mn(Mm) ≡Mmn

in the bipartite system.

6. General quantum states in Mn ⊗Mm are density matrices in Mmn.

7. Every C ∈Mn ⊗Mm is a linear combination of tensor states, i.e., C =
∑N

j=1 µjAj ⊗Bj .

8. A state C ∈ Dmn is separable if it is a convex combination of tensor states, i.e., there are

p1, . . . , pr > 0 with
∑r

j=1 pj = 1 such that C =
∑r

j=1 prAr ⊗Br with Ar ∈ Dn, Br ∈ Dm.

Otherwise, it is entangled.

9. It is easy to check whether C = (Cij) ∈Mn(Mm) is a tensor state, namely, just check whether

all the blocks Cij are multiple of a density matrix B. If yes, write C = A ⊗ B and check

whether A is a density matrix.

10. Important/difficult question. How to determine a state C ∈Mn⊗Mm is separable/entangled.

11. Linear programming, positive semi-definite programming, etc. It is an NP-hard problem.

12. How about states with special structure?
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2. Quantum operations

1. Mathematically, a quantum channel or a quantum operation is a trace preserving completely

positive linear map Φ : Mn →Mk admitting the following representation

Φ(X) =
r∑
j=1

FrXF
∗
r

for some F1, . . . , Fr ∈Mk,n satisfying
∑r

j=1 F
∗
j Fj = In.

2. A linear map Φ is a quantum channel if and only if

(Pij) = (Φ(Eij)) ∈Mn(Mk)

is positive semidefinite with tr (Pjj) = 1 for all j and tr (Pij) = 0 for all i 6= j, where

{E11, E12, . . . , Enn} is the standard basis for Mn.

3. The operator system corresponds to Φ is the linear span of

{F ∗i Fj : 1 ≤ i, j ≤ r} ⊂Mn.

4. In general, an operator system S in Mn is a subspace containing I and self-adjoint, i.e.,

satisfies A ∈ S if and only if S.

Proposition Every operator system in S is Mn can be viewed as the operator system of a quantum

operation.

Proof. Let S ∈ Mn have a basis {I, A1, . . . , Am} with Aj = A∗j for j = 1, . . . ,m. Construct

Q = (Qij) ∈ Mm+1(Mn) such that Qr,s = Aj whenever |r − s| = 1, and all other blocks equal to

zero. Then there is r > 0 such that Q̃ = 1
r(m+1)(rI + Q) is positive semidefinite. So, Q̃ = F ∗F =

[F1| · · · |Fm+1]
∗[F1| · · · |Fm+1], where Fj ∈ Mn,k, where n is the rank of Q̃. It follows that S is the

operator system corresponding to Φ : Mn →Mk defined by Φ(X) =
∑m+1

j=1 FjXF
∗
j . �

Remark Professor Y.T. Poon (Iowa State University) pointed out that one may set k = [m/2] and

Q = (Qij) ∈ M`(Mn) with Qr,r+1 = A2r−1 + iA2r for r = 1, . . . , [m/2], and for sufficiently large r

(1) Qrr = rI if m = 2`, (2) Q11 = rI +Am,m, Q` = rI −Am,m, and Qrr = rI for other r. Then we

can do the factorization of Q̃ to get the desired result.
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Question Let S = span {I, A1, . . . , Ak} ⊆Mn be an operator system.

• Find the smallest k such that S is the operator system of a quantum channel Φ : Mn →Mk.

• Find the maximum number r for the existence of an n × r matrix X such that X∗AX is a

diagonal matrix for all A ∈ {I, A1, . . . , Am}.

The maximum value r is the capacity of the channel/operator system.

• Find the maximum number r for the existence of a n × r matrix X such that X∗AX is a

scalar matrix for all A ∈ {I, A1, . . . , Am}.

The maximum r is the maximum dimension of an error correction code of the channel.

Some Partial Results

Question Find the minimum k for the existence of a quantum operation Φ : Mn →Mk defined by

Φ(A) =
∑r

j=1 FjAF
∗
j with

∑r
j=1 F

∗
j Fj = In satisfying span {F ∗i Fj : 1 ≤ i, j ≤ r} = S for a given

operator system S in Mn.

Here is a useful lemma.

Lemma Let S be an operator system be spanned by a basis {A0, . . . , Am} ∈Mn. Then F1, . . . , Fr ∈
Mk,n satisfy

∑r
j=1 F

∗
j Fj and S = span {F ∗i Fj : 1 ≤ i, j ≤ r} if and only if for any unitary

U ∈ Mn, V ∈ Mk the matrices F̂j = UFjV for j = 1, . . . , j satisfy
∑r

j=1 F̂
∗
j F̂j and span {F̂ ∗i F̂j :

1 ≤ i, j ≤ r} = V ∗SV = span {V ∗AjV : 0 ≤ j ≤ m}.

Theorem Suppose S is commutative, i.e., XY = Y X for all X,Y ∈ S. Then k = n.

Proof. Suppose S = span {In, A1, . . . , Am}. We may assume that A1, . . . , Am are diagonal

matrices. Then for a sufficiently large µ > 0 such that µI ≥ Aj for all j = 1, . . . ,m. We

may let Fj =
√
µI −Aj for j = 1, . . . ,m. Now, let ν > 0 be (sufficiently large) such that

D0 = νI−
∑m

j=1 F
2
j ≥ 0. Then for F0 =

√
D0 one readily checks that the linear map Φ : Mn →Mn

defined by

Φ(A) =
1

ν

m∑
j=0

FjAF
∗
j

satisfies S(Φ) = S.

Now, suppose k < n, and Φ : Mn → Mr defined by Φ(A) =
∑r

j=1 FjAF
∗
j satisfies S(Φ) = S,

and hence F ∗i Fj are diagonal matrices. Then there is a unitary U ∈ Mn such that such that

U1F1 ∈ span {E11, . . . , Ekk} ⊆Mn,k. We may replace Fj by U1Fj for all j = 1, . . . , r. Now, F ∗2F1 is

a diagonal matrix, we can adjust U1 to get a unitary U2 such that U2F1, U2F2 ∈ span {E11, . . . , Ekk}.
Next, F ∗3F1, F

∗
3F2 are diagonal matrices, we can further adjust U2 to get a unitary U3 such that

U3F1, U3F2, U3F3 ∈ span {E11, . . . , Ekk}. Repeat this argument until we get a unitary Ur ∈ Mn

such that {UrF1, . . . , UrFr} ⊆ span {E11, . . . , Ekk}. But then In /∈ S, which is a contradiction. �
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Note that if S = {I}, then we can use the Φ(I) = I. If S ∈Mn is commutative with dimension

n, then S = span {F1, . . . , Fn} ⊆ Mn with F1 = u1u
∗
1, . . . , Fn = unu

∗
n for an orthonormal basis

{u1, . . . , un}, and we can use Φ(A) =
∑n

j=1 FjAF
∗
j .

Proposition Suppose S = Mn. Then we can let k = 1 and set Φ(A) =
∑n

j=1 e
t
jAej = trA. Then

span {eietj : 1 ≤ i, j ≤ n} = Mn.

The case when n = 2. The operator system S = span {I, A1, . . . , Am} may have dimension

d ∈ {1, 2, 3, 4}. The previous propositions cover the cases for d = 1, 2, 4. For d = 3, it was shown

by P.S. Pan, Y.T. Poon, and C.K. Li that k = 2 in this case.

Proof. If S = span {I2, A1, A2}. we may apply a unitary similarity and change I2, A1 to E11, E22,

then we may assume A2 has diagonal entries. Then apply a diagonal unitary similarity, we may

assume that A2 = E12 + E21. Thus, § is the set of symmetric matrices.

Let

F1 =
1√
24

(
4 0
0 2

)
, F2 =

1√
24

(
0 1
2 3

)
, F3 =

1√
24

(
0 −1
−2 3

)
.

Then F ∗1F2 + F ∗2F2 + F ∗3F3 = I2 and

span {F ∗i Fj : 1 ≤ i, j ≤ 3} = S = span {E11, E22, E12 + E21}.

Alternatively, one may consider the rank 2 positive semidefinite matrix

Q =
1

4
√

2

( √
2I2 (1 + i)(E12 + E21)

(1− i)(E12 + E21)
√

2I2

)
,

and find the factorization [F1 F2]
∗[F1 F2] with F1, F2 ∈ M2 so that Φ : M2 → M2 defined by

Φ(X) = F1XF
∗
1 + F2XF

∗
2 satisfies S(Φ) = S. �

Further work Study the problem for n = 3. The propositions cover the cases when S has

dimension d = 1, 2, 9, and the commutative case when d = 3. So, it remain to consider the case

when d = 4, 5, 6, 7, 8 and the non-commutative case when n = 3.
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Construction of some special matrix sets

1. (Mutually unbiased bases - MUB) Construct unitary U1 = In, U2, . . . , Uk ∈ Mn such that

every entries of U∗i Uj has modulus 1/
√
n.

One may take U2 = 1√
n

(w(r−1)(s−1)) with w = ei2π/n.

It is known that k ≤ n+ 1. If n is a prime power, i.e., n = pm, then one can get n+ 1 such

matrices.

Big open question. When n = 6 can we construct 3,4,5,6, or 7?

2. (Werner-Holevo channel decomposition) Consider the channel Φ : Mn →Mn defined by

Φ(X) =
1

n+ 1
(X + (trX)In) =

1

N


n∑
j=1

(
√

2)Ejj)X(
√

2)Ejj +
∑
i<j

EijXEji

 ,

where N = N(N+1)/2. Find symmetric unitary matrices U1, . . . , UN such that tr (U∗i Uj) = 0

for all i 6= j and

Φ(X) =
1

N

N∑
j=1

UjXU
∗
j .
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