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Quantum Gates

@ Quantum gates are similar to logic gates in classical
computing, in that they are used to manipulate a quantum
system
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Motivation

Quantum Computing

@ Letting |0),|1) be two measureables, a qubit
[a] =a [1] + b [(1)] represents the superposition al0) + b|1)

b 0

@ We concatenate 24 qubits into multi-qubit quantum
ensembles via tensor products:
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@ This 2-qubit system has 4 measureables, represented by the
basis vectors of C*.
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» The basis vectors, corresponding to physical measureables, of
the above bipartite or joint quantum state are
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» We use the physicists notation;
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motivation

[Bemgle.

» We use the physicists notation;

1 0 0 0
0 1 0 0
10 10 0 L]
So,
-
°9 | = acl00) + ad]01) + be[10) + bd|11)
_bd_




Motivation

How Many Measureables does a 64-qubit multipartite system have? \




Motivation

Some other operations

Let A, B € M.
@ The tensor product of A and B is

all B a2 B]

A®B = [3218 3228

@ The direct sum of A and B is defined as
A O]

A@B:[O B

where 0 € M>.
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Motivation

Quantum gates reign things in

@ An n-qubit system has 2”7 measureable states, and a classical
computer has to deal with each of these...

@ A Quantum computer uses Quantum, or Unitary, Gates
(Unitary matrices) to handle these n-qubit systems in a single
operation.




Motivation

Definition
A matrix U € M,(C) is unitary if U- U* = U* - U = | where *
denotes the conjugate transpose.

Important Properties

e U is invertible and U~! = U*

@ The rows and columns of U are orthonormal




Motivation-Example Quantum Gates in 1 qubit

Hadamard Gate

The Hadamard gate, H, is a commonly used gate where
1 |1 1
el ]

Pauli Matrices
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Motivation

@ The set of Unitary Gates a quantum computer can generate
directly determines its capability.

@ Obivously, we do not want to limit our systems’ possible
operations...

@ We can do even better: How can we not only allow for all
operations, but have an efficient ” generating set” of
simple unitaries?
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@ There are two types of gates that are easy to implement

e 1-control gates
o Free-gates




A Decomposition Scheme-2 Qubit Case

Experimentalists are working on possible physical manifestations in
the 1-4 qubit cases.

2 Qubits Corresponds to 4-by-4 Unitaries

@ There are two types of gates that are easy to implement

e l-control gates
o Free-gates

Experimentalists find these to be simple to implement.
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1-Control Gates

AV)=hoV
ov)=Vealbh
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Decomposition of Quantum Gates-2 Qubit Case

Vi1 0 Vi2 0

0 Vi1 0 V12
V21 0 V2o 0

0 Vo1 0 V22 |

(V)= Veh=

Vil V12 0 0 |
Vo1 V22 0 0
0 0 Vil V12
0 0 Vo1 V22

(V)=h®V =
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A Decomposition Scheme-2 Qubit Case

Whats the difference?

Consider a 2-qubit Vector State
q= ao|00> + 31‘01> -+ 32’10> + 33‘11>.

Operating on this system with a free-gate, (xV/), yields

(I ®@ V)(q) =[0) ® V(a0|0) + a1|1)) + [1) ® V(a2[0) + a3[1)).

Operating on this system with a 1-control gate, (1V), yields

(1 © V)(q) = a0[00) + a1(01) + [1)V(a2[0) + a3|1)).




A Decomposition Scheme-2 Qubit Case

Whats the difference?

Consider a 2-qubit Vector State
q = ao’OO> S 31‘01> + 32’10> - a3\11>.

Operating on this system with a free-gate, (*V), yields

(1 ® V)(q) =10) ® V(a0|0) + a1|1)) + [1) ® V(a2/0) + a3]1)).
Operating on this system with a 1-control gate, (1V), yields

(1'® V)(q) = a0[00) + a1/01) + [1)V(a2|0) + a3[1)).

I-controls, or controlled gates, in general, are named so because
they act solely on some of the components of a multi-partite state,
and leave the rest alone (computationally expensive!)

o




A Decomposition Scheme-2 Qubit case

Previous Result(Li, Roberts, Yin)

Using control gates, one can decompose an arbitrary n-by-n
unitary matrix into a product of at most (g) unitary matrices
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A Decomposition Scheme-2 Qubit case

Previous Result(Li, Roberts, Yin)

One can decompose an arbitrary n-by-n unitary matrix into a
product of at most (Z) P-unitary matrices
» P-unitary matrices are (1V), (0V), (V1), and

1 0 0 O]
0 wvirz vio O
0 w1 v 0

0 0 0 1

n\ __ n!
(k) — Kl(n—k)I"
@ For 4-by-4, at most 6 unitary matrices.

@ For 8-by-8, at most 14 unitary matrices.

@ etc.
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and achieve a lowest possible cost.
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A Decomposition Scheme-2 Qubit case

The above decomposition scheme heavily utilized control gates.
The next step was to introduce free-gates into the decomposition,
and achieve a lowest possible cost.

More Important Results (Li, Pelejo)
@ In the 4-by-4 case, 3 1-control gates is enough for any unitary

@ We can always freely transform a 4-by-4 1-control gate into a
(1V) gate

@ A decomposition scheme was developed and extended to all n,
as well as a recursive formula giving the number of free and
k-control gates that could be used to decompose an arbitrary
unitary.

e We want(ed) to further reduce the number of controls!




Current Scheme

@ How many gates are necessary, and, specifically, how many
1-control gates are necessary and sufficient?

@ What is the most efficient scheme for decomposing general
unitaries?

1-control gates are a metaphoric cost in a decomposition!
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telling information about our candidate?
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Current Scheme

How should one attack the problem?

@ What can we do for free that simplifies the problem, or gives
telling information about our candidate? (x)

@ Switch focus from finding ways to decompose a matrix, to
finding out what must be true if the matrix can be written as

a product of free gates, free gates and a single 1-control gate,
etc.
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Example in 4-by-4 case

@ If a matrix M can be decomposed using only free gates, it can
be written as

M=A® B,

Where A and B are 2-by-2 unitary matrices.
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Current Scheme

Example in 4-by-4 case

@ If a matrix M can be decomposed using only free gates, it can

be written as
M=A®B,

Where A and B are 2-by-2 unitary matrices.
(%) This requires that each block be a scalar multiple of some
unitary!

@ If M can be decomposed using free gates, and a single
1-control, then it can be written as

M= (A® B)(hL® W)(E® F),

Where A, B, W, E, F all unitary.




Current Scheme

Recall the Singular Value Decomposition

For any matrix A € M, there is a unitary equivalence of A yielding
a diagonal matrix, with entries the singular values of A
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Current Scheme

Recall the Singular Value Decomposition

For any matrix A € M, there is a unitary equivalence of A yielding
a diagonal matrix, with entries the singular values of A

Its singular value decomposition yields the factorization,

m=uvsv=[0 OL 30 5]




Sidenote

The unitary matrix
0 1
1 0

Is known as the Not Gate.

» It is important-a class of controlled gates utilizes its properties.

Ex., the CNOT Gate is

O O O =
O O = O

R O O O

o = O O




Current Scheme

Number of necessary 1-control gates

M1 My
We let M =

[/\/’21 Ma»
SVD, there exist unitary U and V such that

] be a general 4x4 unitary matrix. By the

V- M- U= C = diag(c1, ).
So

C SU

where S = diag(s1, s2).

Our Scheme revolves around the values of ¢; and o



Current Scheme

Free Decomposition (Theorem)

@ Given a 4 by 4 unitary matrix

_ |Mi1 M| «| € SU R
M = [le /\/122] =(h® V) [VS —VCU] (hb®U)",

Letting C = diag(c1, ).

Then, M is a product of free gates if and only if c; = ¢, and
stUV* + UV and syc1V are scalar matrices.

» i.e., for a given unitary, check three things, and you'll know
whether controlled gates are needed for decomposition!




Current Scheme

One 1-Control and Free Gates (Theorem)

@ Again, take a unitary and write it as

M1 Mio C SU

i = [le Mzz] =(k®V) [VS —VCU

[s vy

Then, M is a product of free gates and one 1-control gate if
and only if either,

o (i) o =c and C,S, U, and V are simultaneously unitarily
diagonalizeable.

o (ii) a1 # c € (0,1) and V, U are both scalar matrices.

o (iii) C and S are rank 2




Current Scheme

2 1-Control and Free Gates(?)

@ We know that a unitary can be written as a product of free
gates and two 1-control gates when ¢; = ¢ € (0,1) and U, V
are not simultaneously diagonalizeable.

@ This is incomplete, ¢; # ¢ and?




Another Scheme

The Result of Kraus and Cirac-see [1]

The authors proved that every U € SU(4) can be written as
U= (A1 ®Az)(exp(i(dxox®ox+d,o0,®0,+d,0,®0;))(B1® B>)
with A1, As, By, B> € 5U(2), dy, dy, d, € R.

v




Another Scheme

We also know that any U € SU(4) is decomposable using at most
three 1-control gates-[6]. We wish to know whether the two
different schemes can be used in combination.

@ SVD is not computationally expensive-when is it better?

@ Can this be used to find conditions where two 1-controls are
sufficient?

@ Insight into the general case




Future Directions

@ Comparison of the two Schemes.

e Utility of Different Schemes Relative to Different Physical
Manifestations.

@ Find a quantitative operation on a matrix which determines
which scheme is most efficient.

@ Higher qubits.
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