Note on Homework 7

5.1 Follow the algorithm, and compute $\left(|00\rangle(-1)^{f(00)}+\cdots+|11\rangle(-1)^{f(11)}\right)(|0\rangle-|1\rangle)$.
5.2 Again follow the algorithm and verify the result.
6.1 Let $|v\rangle=(\tilde{f}(0), \ldots, \tilde{f}(N-1))^{t}$, and $|u\rangle=(f(0), \ldots, f(N-1))^{t}$. Then \ldots
6.2 May see the hint at the end of the book and write down the solution clearly.
6.3 Work one the $n=2,3$ case carefully, and argue that cancellation will occur except at the $|x\rangle$ with $x=0, \ldots,(P-1) 2^{n} / P$.

Note that if we get $k_{1} 2^{n} / P$ and $k_{2} 2^{n} / P$ for k_{1}, k_{2} of different parities, we can decide $2^{n} / P$ and hence P.
6.4 Use the fact that $U_{Q F T_{n}}$ is symmetric.

