
The Google PageRank Algorithm

Jamie Arians
College of William and Mary

Jamie Arians The Google PageRank Algorithm

What is the Google PageRank Algorithm?

Jamie Arians The Google PageRank Algorithm

Background Knowledge

In 1989 The World Wide Web (the internet) was invented by Tim Berners Lee
It revolutionized information access and storage
However searching for specific information was very difficult and inefficient

In 1998 link analysis revitalized computerized information retrieval

All the successful search engines adopted link analysis

Define:
Link analysis: a technique that exploits the information inherent in the
hyperlink structure of the internet

Search engine: a virtual machine created by software which enables them to
sift through virtual files to find the most relevant documents to a query

There are 3 traditional search engine models for searching information
collections like the internet:
Boolean Search Engine Model
Vector Space Search Engine Model
Probabilistic Search Engine Model

Jamie Arians The Google PageRank Algorithm

Boolean Search Engine Model

This model uses exact matching to find relevant documents by considering
what keywords are present or absent in a document

Documents are considered relevant or irrelevant, there is no in-between

Drawbacks:

Synonymy
Polysemy

Jamie Arians The Google PageRank Algorithm

Vector Space Search Engine Model

Transforms textual data into numeric vectors and matrices

This model uses matrix analysis techniques to discover key features and
connections in the document collection

Allows documents to partially match a query by assigning it a number between
0 and 1 which represents the likelihood of relevance of the query

Retrieved documents are returned in an ordered list by degree of relevance

Drawback:

There is a very large computational expense because each documents
relevance score must be computed and ordered individually

Jamie Arians The Google PageRank Algorithm

Probabilistic Model Search Engines

This model attempts to estimate the probability a user will find a particular
document relevant

Retrieved documents are ranked by odds of relevance

The ratio of probability that the document is relevant is divided by the ratio of
probability that the document is not relevant

The search engine operated recursively and requires the algorithm to guess at
initial parameters then iteratively tries to improve the guess to obtain a final
relevancy rating

A major positive about this model is that the algorithm can keep track of a
user’s query history and use that to build a better initial guess
Drawback:

This algorithm very hard to build and program
The complexity grows very quickly

Jamie Arians The Google PageRank Algorithm

Meta-Search Engines

There is actually a 4th search engine model

Meta-search combines the 3 classic models
One search engine is good but 2 or more is better

This model sends the query to several search engines and returns the results in
one long unified list

Jamie Arians The Google PageRank Algorithm

Comparing Search Engines

There are 2 common ratings used to differentiate search engine models

Precision: ratio of relevant documents to total documents
Recall: ratio of total relevant documents to documents retrieved

Jamie Arians The Google PageRank Algorithm

Hyperlink Structure

Link analysis looks at information inherent in the hyperlink structure of the
internet
So what is the hyperlink structure?

It is basically a massive digraph

nodes are web pages and directed arcs are the hyperlinks
hyperlinks pointing to a page are inlinks
hyperlinks going from a page are outlinks

Hyperlinks are created when one web page references another

Jamie Arians The Google PageRank Algorithm

PageRank

The PageRank algorithm uses the hyperlink structure to determine the
importance and relevance of web pages

PageRank views the hyperlinks as recommendations

A page with more recommendations (inlinks) is more important than a page
with few inlinks

A page is considered more important if it is pointed to by other important pages

Web pages are given a score 0-10 with 10 being the most important and 0
being spam pages

PageRank is query independent so it is faster and more effiecient than query
dependent algorithms

Query independent:the popularity score is determined offline so at runtime no
time is spent computing the popularity scores for webpages

Jamie Arians The Google PageRank Algorithm

PageRank (cont.)

PageRank began with a summation equation, in which the PageRank of a page
Pi, denoted r(Pi), is the sum of the PageRanks of all pages pointing into Pi

r(Pi) =
∑

Pj ∈BPi

r(Pj)
|Pj |

Where BPi is the set of pages pointing into Pi and |Pj | is the number of
outlinks from page Pj

Jamie Arians The Google PageRank Algorithm

Iterative PageRank

The problem with this initial equation is that the r(Pj) values are unknown. To
counteract this we use an iterative procedure
We assume at the begining that all pages have equal PageRank (say 1

n
, where

n is the number of pages in the index of the web)
The rule in the previous equation is applied to compute r(Pi) for every Pi in
the index then the values of the previous iterate are substituted into r(Pj)

So let rk+1(Pi) be the PageRank of page Pi at iteration k + 1
Then

rk+1(Pi) =
∑

Pj ∈BPi

rk(Pj)
|Pj |

We initiate this process with r0(Pi) = 1
n
for all pages Pi and repeat hoping

that the PageRank scores will eventually converge to some final stable values

Jamie Arians The Google PageRank Algorithm

Example

Iteration 0 | Iteration 1 | Iteration 2 | Rank at Iteration 2
——————————————————————–
r0(P1) = 1

6 | r1(P1) = 1
18 | r2(P1) = 1

36 | 5
r0(P2) = 1

6 | r1(P2) = 5
36 | r2(P2) = 1

18 | 4
r0(P3) = 1

6 | r1(P3) = 1
12 | r2(P3) = 1

36 | 5
r0(P4) = 1

6 | r1(P4) = 1
4 | r2(P4) = 17

72 | 1
r0(P5) = 1

6 | r1(P5) = 5
36 | r2(P5) = 11

72 | 3
r0(P6) = 1

6 | r1(P6) = 1
6 | r2(P6) = 14

72 | 2

So after iteration 2, P4 has the highest PageRank score and is considered the
most important and P1 and P3 are tied for the least important

Jamie Arians The Google PageRank Algorithm

Matrix Representation
The summation equations compute PageRank one page at a time, but with
matrices we can compute a page rank vector at each iteration

This uses a single 1xn vector to hold the PageRank values for all pages in the
index.

To do this, we introduce an nxn matrix H and a 1xn row vector πT

H is a row normalized hyperlink matrix with Hij = 1
|Pi| if there is a link from

node i to node j and 0 otherwise

Consider again our example web of six pages

The H matrix for this graph is

H =

P1
P2
P3
P4
P5
P6



P1 P2 P3 P4 P5 P6

0 1
2

1
2 0 0 0

0 0 0 0 0 0
1
3

1
3 0 0 1

3 0
0 0 0 1

2 0 1
2

0 0 0 0 1
2

1
2

0 0 0 1 0 0


Jamie Arians The Google PageRank Algorithm

Matrix Representation (cont.)

H =

P1
P2
P3
P4
P5
P6



P1 P2 P3 P4 P5 P6

0 1
2

1
2 0 0 0

0 0 0 0 0 0
1
3

1
3 0 0 1

3 0
0 0 0 1

2 0 1
2

0 0 0 0 1
2

1
2

0 0 0 1 0 0


The nonzero elements of row i correspond to the outlinking pages of page i,
whereas the nonzero elements of column i correspond to the inlinking pages of
page i.

Now we introduce a row vector π(k)T , which is the PageRank vector at the kth
iteration
Using this matrix notation, the previous summation equation can be written as

π(k+1)T = π(k)T H

Jamie Arians The Google PageRank Algorithm

Observations

Each iteration requires one vector-matrix multiplication, which on average
requires O(n2) time complexity, where n is the size of the square matrix
H
H is a very sparse matrix, because most pages only link to a few other
pages

This is welcome because sparse matrices require much less time
complexity than a O(n2) dense computation.

On average, sparse matrix multiplication requires 0(nnz(H)) time
complexity where nnzH is the number of nonzeros in H
The average webpage has about 10 links so H has about 10n nonzeros so
the vector-matrix multiplication reduces to 0(n) time complexity
The iterative process of π(k+1)T = π(k)T H is a simple linear stationary
process, in fact it is the classical power method applied to H
H is very similar to a stochastic transition probability matrix for a Markov
chain.

The dangling nodes of the network, those nodes with no outlinks, create
0 rows in the matrix. All the other rows, which correspond to
nondangling nodes create stochastic row. Thus H is substochastic

Jamie Arians The Google PageRank Algorithm

Questions and Problems with Iterative Process

Questions:

Will the iterative process continue indefinitely or converge?
Under what circumstances is it guaranteed to converge?
Will it converge to something that makes sense in the context of the
PageRank problem?
Will it converge to just one or multiple vectors?
Does the convergence depend on the starting vector π(0)T ?
If it will converge, how many iterations will it take?

Problems:
rank sinks
cycles

Jamie Arians The Google PageRank Algorithm

Markov Chain Theory

In our observations, we noted that the equation resembled the power method
applied to a Markov chain with transition probability matrix H

With Markov Theory we can make adjustments to the equation that insure
desirable results, convergence properties, and answers to the our questions

In particular we know that for any starting vector, the power method applied to
a Markov matrix P converges to a unique positive vector called the stationary
vector as long as P is stochastic, irreducible, and aperiodic (Aperiodicity plus
irreducability implies primitivity)

Therefore the Convergence problems caused by rank sinks and cycles can be
overcome if H is modified so that it is a Markov matrix with these properties

Jamie Arians The Google PageRank Algorithm

Adjustments

First, what we call the stochasticity adjustment because the 0T rows of H are
replaced with 1

neT , making H stochastic
For our example, the stochastic matrix S is

S =


0 1

2
1
2 0 0 0

1
6

1
6

1
6

1
6

1
6

1
6

1
3

1
3 0 0 1

3 0
0 0 0 0 1

2
1
2

0 0 0 1 0 0


Mathematically, S is created from a rank-one update to H, S = H + a(1

neT

where ai = 1 if page i is a dangling node and 0 otherwise

The binary vector a is called the dangling node vector
S is a combination of the raw original hyperlink matrix H and a rank-one
matrix 1

naeT

Jamie Arians The Google PageRank Algorithm

Adjustments (cont.)

The Stochasticity Adjustment guarantees that S is stochastic but it cannot
guarantee that a unique positive πT exists and that the equation will converge
to this πT quickly

So another adjustment is needed, this time a Primitivity Adjustment.
So we create the Google Matrix G such that

G = αS + (a − α)1/neeT

where α is a scalar between 0 and 1

Jamie Arians The Google PageRank Algorithm

Results of primitivity adjustment

G is stochastic, it is the convex combination of the two stochastic
matrices S and E = 1

neeT

G is irreducible, every page is directly connected to every other page so
irreducibility is trivially enforced
G is aperiodic. The self-loops (Gii > 0 for all i) create aperiodicity
G is primitive because Gk > 0 for some k (This holds for k = 1). This
implies that a unique πT exists and the power method applied to G is
guaranteed to converge to this vector
G is completely dense, which is very bad computationally. Fortunately G
can be written as a rank-one update to the very sparse hyperlink matrix
H which is very computationally advantageous
G is artificial in the sense that the raw hyperlink matrix H has been
modified twice to produce desirable convergence properties. A stationary
PageRank vector does not exist for H but it does exist for G, and is
remarkably good at giving a global importance value to webpages

Jamie Arians The Google PageRank Algorithm

Example

To summarize, Google’s adjusted PageRank method is π(k+1)T = π(k)T G
which is simply the power method applied to G

To finish our example, for α = .9 , the stochastic primitive matrix G is

G = .9H + (.9


0
1
0
0
0
0

+ .1


1
1
1
1
1
1

)1
6
(
1 1 1 1 1 1

)

=


1

60
7

15
7

15
1

60
1

60
1

60
1
6

1
6

1
6

1
6

1
6

1
6

19
60

19
60

1
60

19
60

1
60

1
60

1
60

1
60

1
60

7
15

1
60

7
15

1
60

1
60

1
60

11
12

1
60

1
60



Jamie Arians The Google PageRank Algorithm

Example (cont.)

Google’s PageRank Vector is the stationary vector of G and is given by

πT =
(

1 2 3 4 5 6
.03732 .05396 .04151 .3751 .206 .2862

)
The pages in this example web can be ranked by their importance as(

4 6 5 2 3 1
)

Meaning 4 is the most important page and 1 is the least important

Jamie Arians The Google PageRank Algorithm

Thank you for your attention!

Jamie Arians The Google PageRank Algorithm

