Exercises in textbook. 8.1-8.4. (12 points each)

- EXERCISE 8.1 Let $N=35$. Repeat the above steps to find the factors of N. (There are M whose orders are less than 10 . If your m does not give $P<10$, try another m. Good luck!) Answer: Given $N=35$, we want to find the factors of N using the steps outlined in the example.

1. Select an m such that $\operatorname{gcd}(N, m)=1$. Let us choose $m=3$.
2. Now, we find the period P, where $m^{P} \equiv 1 \bmod N$. Let $P=12$.
3. This period is even, so we may proceed to the next step.
4. Now, we compute $\operatorname{gcd}\left(m^{P / 2}-1, N\right)=7$ and $\operatorname{gcd}\left(m^{P / 2}+1, N\right)=5$. These are both nontrivial factors of $N=35$.
5. Given one factor, we may divide $N=35$ by it to obtain the other.

- EXERCISE 8.2 Let $N=21$ and $m=11$. Find n which satisfies $N^{2} \leq 2^{n}<2 N^{2}$. Find the order P. Repeat the above steps to find the wave function $\left|\psi_{3}\right\rangle$ and $\operatorname{Prob}(y), y \in S_{n}$.
Answer: $n=9$ satisfies the condition. The order $P=6$ works, $11^{6} \equiv 1 \bmod 21$.

1. We first set the registers to the initial state:

$$
\left|\psi_{0}\right\rangle=|R E G 1\rangle|R E G 2\rangle=|0\rangle|0\rangle .
$$

2. We first apply the Walsh-Hadamard transform on the first register. Like the QFT, it also produces a uniform superposition of the first register. This yields the following updated $\left|\psi_{0}\right\rangle$:

$$
\left|\psi_{1}\right\rangle=\left(W_{n} \otimes I\right)\left|\psi_{0}\right\rangle=\frac{1}{\sqrt{2^{9}}} \sum_{x \in\{0,1\}^{9}}|x\rangle|0\rangle .
$$

3. Now, we apply a unitary gate U_{f} that realizes the action of $f(x)=m^{x} \bmod N$, for $x \in S_{n}$, in such a way that $U_{f}|x\rangle|0\rangle=|x\rangle|f(x)\rangle$.

$$
\left|\psi_{2}\right\rangle=\left(U_{f} \otimes I\right)\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{2^{9}}} \sum_{x \in 0,1^{9}}|x\rangle|f(x)\rangle .
$$

4. Finally, we may again apply the Walsh-Hadamard transform to yield $\left|\psi_{3}\right\rangle$.

$$
\left|\psi_{3}\right\rangle=\left(W_{n} \otimes I\right)\left|\psi_{2}\right\rangle=\frac{1}{2^{9}} \sum_{x \in\{0,1\}^{9}} \sum_{y \in\{0,1\}^{9}}(-1)^{x y}|y\rangle|f(x)\rangle
$$

To find $\operatorname{Prob}(y)$, we calculate:

$$
\operatorname{Prob}(y)=\| \frac{1}{2^{9}} \sum_{x \in 0,1^{n}}(-1)^{x y}|f(x)\rangle \|^{2}
$$

- EXERCISE 8.3 Find the continued fraction expansion of $x=61 / 45$ and $x=121 / 13$.

Answer:

1. To find the continued fraction expansion of $x=\frac{61}{45}$, we perform a modified Euclidean algorithm:

$$
\frac{61}{45}=1+\frac{16}{45}=1+\frac{1}{2+\frac{13}{16}}=1+\frac{1}{2+\frac{1}{1+\frac{3}{13}}}=1+\frac{1}{2+\frac{1}{1+\frac{3}{13}}}=1+\frac{1}{2+\frac{1}{1+\frac{1}{4+\frac{1}{3}}}} .
$$

Therefore the continued fraction expansion of $x=\frac{61}{45}$ is $[1,2,1,4,3]$.
2. We apply the same idea for $x=\frac{121}{13}$.

$$
\frac{121}{13}=9+\frac{4}{13}=9+\frac{1}{3+\frac{1}{4}} .
$$

Therefore the continued fraction expansion of $x=\frac{121}{13}$ is $[9,3,4]$.

- EXERCISE 8.4 Suppose $y=37042$ is the measurement outcome in the above example. Find the order P by repeating the above algorithm. Suppose $y=65536$ has been obtained in the next measurement. Apply the above algorithm. What is the "order" you find?

Answer: To reiterate, $N=799, Q=1048576, m=7$. The continued fraction expansion of $37042 / 1048576$ is $[0,28,3,4,88,1,4,3]$. We find the order 368 .
The continued fraction expansion of $65536 / 1048576$ is $[0,16]$. Let $p_{0}=0, q_{0}=1$. This choice of y does not yield a valid order.

