- In quantum physics, we use the unit vectors $|0\rangle=\binom{1}{0}$ and $|1\rangle=\binom{0}{1}$ to represent the states.

$$
|0\rangle\langle 0|=\binom{1}{0}\left(\begin{array}{ll}
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=E_{11} \quad \text { and } \quad|1\rangle\langle 1|=\binom{0}{1}\left(\begin{array}{ll}
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=E_{22} .
$$

- A photon in a quantum environment has the form $|\psi\rangle=\binom{a}{b}$ with $a, b \in \mathbb{C}$ such that $|a|^{2}+|b|^{2}=1$. Note that we have to use complex numbers!
- In matrix form, we have $\rho=|\psi\rangle\langle\psi|=\left(\begin{array}{cc}|a|^{2} & a \bar{b} \\ b \bar{a} & |b|^{2}\end{array}\right)$. Note that $\rho=\rho^{\dagger}$.
- Example: If $|\psi\rangle=\sqrt{3}\binom{1}{1+i}$, then $|\psi\rangle\langle\psi|$.
- Suppose $A=E_{11}, B=E_{22}, C=\frac{1}{2}\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$. Then $A B C=0=C A B$, but $A C B \neq 0$.
- Note that $C=\frac{1}{2}\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right)$ and $D=\frac{1}{2}\left(\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right)$ are two measurable states of photons using a different basis/frames.
- $\mathbb{C}^{n}$ is a vector space under addition and multiplication.
$v_{1}+v_{2}$ for $v_{1}, v_{2} \in \mathbb{C}^{n}, \mu v$ for $\mu \in \mathbb{C}, v \in \mathbb{C}^{n}$.
- In particular, $\langle v|$ is the conjugate transpose of $|v\rangle$.
- It is easy to express a vector as a linear combination of orthonormal basis $\left\{\left|e_{1}\right\rangle, \ldots,\left|e_{n}\right\rangle\right\}$.
- The set $\left\{P_{j}=\left|e_{j}\right\rangle\left\langle e_{j}\right|: j=1, \ldots, n\right\}$ form a complete set of projection operators/matrices.
- Gram-Schmidt orthogonalization/orthonormalization.

Let $\left\{\left|x_{1}\right\rangle, \ldots,\left|x_{m}\right\rangle\right\}$ be linearly independent.
Set $\left|e_{1}\right\rangle=\left|x_{1}\right\rangle / \|\left|x_{1}\right\rangle \|$.
Set $\left|e_{2}\right\rangle=\left|f_{2}\right\rangle / \|\left|f_{2}\right\rangle \|$, where $\left|f_{2}\right\rangle=\left|x_{2}\right\rangle-\left\langle e_{1} \mid x_{2}\right\rangle\left|e_{1}\right\rangle$ is orthogonal to $\left|e_{1}\right\rangle$.
For $k>1$, set $\left|f_{k}\right\rangle / \|\left|f_{k}\right\rangle \|$, where $\left|f_{k}\right\rangle=\left|x_{k}\right\rangle-\left(\sum_{j=1}^{k-1}\left\langle e_{j} \mid x_{k}\right\rangle\left|e_{j}\right\rangle\right.$ is orthogonal to $\left|e_{1}\right\rangle, \ldots,\left|e_{k}\right\rangle$.

- For any basis $\left\{\left|x_{1}\right\rangle, \ldots,\left|x_{n}\right\rangle\right\}$ of $\mathbb{C}^{n}$, there is an orthonormal basis $\left\{\left|e_{1}\right\rangle, \ldots,\left|e_{n}\right\rangle\right\}$ such that $\left\{\left|x_{1}\right\rangle, \ldots,\left|x_{m}\right\rangle\right\}$ and $\left\{\left|e_{1}\right\rangle, \ldots,\left|e_{m}\right\rangle\right\}$ span the same subspace for $m=1, \ldots, n$.
- For any linearly independent set $\left\{\left|x_{1}\right\rangle, \ldots,\left|x_{m}\right\rangle\right\}$, we can get an orthonormal basis $\left\{\left|e_{1}\right\rangle, \ldots,\left|e_{n}\right\rangle\right\}$ such that $\left.\left\{\left|x_{1}\right\rangle, \ldots, x_{k}\right\rangle\right\}$ and $\left\{\left|e_{1}\right\rangle, \ldots,\left|e_{k}\right\rangle\right\}$ span the same subspace for $k=1, \ldots, m$.

