Singular value inequalities for matrices with numerical ranges in a sector

Minghua Lin

PIMS postdoctoral fellow

Department of Mathematics and Statistics
University of Victoria

WONRA, July 28, 2014

joint work with Stephen Drury
McGill University
Consider the system of linear equations

$$Ax = b,$$

where A is an $n \times n$ matrix.
Consider the system of linear equations

$$Ax = b,$$

where A is an $n \times n$ matrix.

Let $A^{(k)} = (a^{(k)}_{i,j})$ be the matrix resulted from applying the first k ($1 \leq k \leq n - 1$) steps of Gaussian elimination to A.
Consider the system of linear equations

$$Ax = b,$$

where A is an $n \times n$ matrix.

Let $A^{(k)} = (a_{ij}^{(k)})$ be the matrix resulted from applying the first k $(1 \leq k \leq n - 1)$ steps of Gaussian elimination to A.

The quantity

$$\rho_n(A) \equiv \frac{\max_{i,j,k} |a_{ij}^{(k)}|}{\max_{i,j} |a_{ij}|}$$

is called the growth factor of A.
If A is positive definite, then $\rho_n(A) \leq 1$.

Examples

If A is positive definite, then $\rho_n(A) \leq 1$.

If A is strictly diagonally dominant, then $\rho_n(A) \leq 2$.

If A is positive definite, then $\rho_n(A) \leq 1$.

If A is strictly diagonally dominant, then $\rho_n(A) \leq 2$.

Maximal growth factor

If

\[
A = \begin{bmatrix}
1 & \cdots & 1 \\
-1 & \ddots & 1 \\
\vdots & \ddots & \ddots \\
-1 & \cdots & -1 & 1
\end{bmatrix},
\]

then

\[\rho_n(A) = 2^n - 1.\]
Maximal growth factor

If

$$A = \begin{bmatrix}
1 & \cdots & 1 \\
-1 & \ddots & 1 \\
\vdots & \ddots & \ddots & \ddots \\
-1 & \cdots & -1 & 1
\end{bmatrix},$$

then $$\rho_n(A) = 2^{n-1}.$$
Higham’s conjecture

Higham [Math. Comp. 67 (1998) 1591-1599] considered the case where the coefficient matrix is a complex symmetric matrix whose real and imaginary parts are positive definite.
Higham’s conjecture

Higham [Math. Comp. 67 (1998) 1591-1599] considered the case where the coefficient matrix is a complex symmetric matrix whose real and imaginary parts are positive definite.

Let $A = B + iC$, where B, C are real symmetric positive definite. We say A is CSPD for short.
Higham’s conjecture

Higham [Math. Comp. 67 (1998) 1591-1599] considered the case where the coefficient matrix is a complex symmetric matrix whose real and imaginary parts are positive definite.

Let $A = B + iC$, where B, C are real symmetric positive definite. We say A is CSPD for short.

Higham’s conjecture. If A is CSPD, then $\rho_n(A) \leq 2$.
Ikramov and Kucherov [Numer. Linear Algebra Appl. 7 (2000) 269-274] proved that when A is a Buckley matrix, Higham’s conjecture is true.

George, Ikramov and Kucherov [Numer. Linear Algebra Appl. 9 (2002) 107-114] considered a slightly more general class of matrices. They proved that if A is accretive-dissipative (i.e. real and imaginary part in the Cartesian decomposition are positive definite), then $\rho_n(A) \leq 3 \sqrt{2}$.

If A is CSPD, then $\rho_n(A) \leq 3$.

I proved that [Calcolo (2014) to appear] if A is accretive-dissipative, then $\rho_n(A) \leq 4$. If A is CSPD, then $\rho_n(A) \leq 2 \sqrt{2}$.
Ikramov and Kucherov [Numer. Linear Algebra Appl. 7 (2000) 269-274] proved that when A is a Buckley matrix, Higham’s conjecture is true.

Ikramov and Kucherov [Numer. Linear Algebra Appl. 7 (2000) 269-274] proved that when A is a Buckley matrix, Higham’s conjecture is true.

George, Ikramov and Kucherov [Numer. Linear Algebra Appl. 9 (2002) 107-114] considered a slightly more general class of matrices. They proved that if A is accretive-dissipative (i.e. real and imaginary part in the Cartesian decomposition are positive definite), then $\rho_n(A) \leq 3\sqrt{2}$.

If A is CSPD, then $\rho_n(A) \leq 2\sqrt{2}$.
Ikramov and Kucherov [Numer. Linear Algebra Appl. 7 (2000) 269-274] proved that when A is a Buckley matrix, Higham’s conjecture is true.

George, Ikramov and Kucherov [Numer. Linear Algebra Appl. 9 (2002) 107-114] considered a slightly more general class of matrices. They proved that if A is accretive-dissipative (i.e. real and imaginary part in the Cartesian decomposition are positive definite), then $\rho_n(A) \leq 3\sqrt{2}$.

If A is CSPD, then $\rho_n(A) \leq 3$.
Ikramov and Kucherov [Numer. Linear Algebra Appl. 7 (2000) 269-274] proved that when A is a Buckley matrix, Higham’s conjecture is true.

George, Ikramov and Kucherov [Numer. Linear Algebra Appl. 9 (2002) 107-114] considered a slightly more general class of matrices. They proved that if A is accretive-dissipative (i.e. real and imaginary part in the Cartesian decomposition are positive definite), then $\rho_n(A) \leq 3\sqrt{2}$.

If A is CSPD, then $\rho_n(A) \leq 3$.

I proved that [Calcolo (2014) to appear] if A is accretive-dissipative, then $\rho_n(A) \leq 4$.
Ikramov and Kucherov [Numer. Linear Algebra Appl. 7 (2000) 269-274] proved that when A is a Buckley matrix, Higham’s conjecture is true.

George, Ikramov and Kucherov [Numer. Linear Algebra Appl. 9 (2002) 107-114] considered a slightly more general class of matrices. They proved that if A is accretive-dissipative (i.e. real and imaginary part in the Cartesian decomposition are positive definite), then $\rho_n(A) \leq 3\sqrt{2}$.

If A is CSPD, then $\rho_n(A) \leq 3$.

I proved that [Calcolo (2014) to appear] if A is accretive-dissipative, then $\rho_n(A) \leq 4$.

If A is CSPD, then $\rho_n(A) \leq 2\sqrt{2}$.
Analysis on $\rho_n(A)$

Proposition If $A = (a_{l,j})$ is accretive-dissipative, then

$$\sqrt{2} \max_{l} |a_{ll}| \geq \max_{l \neq j} |a_{lj}|.$$

Suppose $\max_{j,k} |a_{(k)}^{jj}| = |a_{(k_0)^j}|$ for some j_0, k_0, then
Analysis on $\rho_n(A)$

Proposition If $A = (a_{l,j})$ is accretive-dissipative, then

$$\sqrt{2} \max_l |a_{ll}| \geq \max_{l \neq j} |a_{l,j}|.$$

If A is CSPD, then

$$\max_l |a_{ll}| \geq \max_{l,j} |a_{l,j}|.$$
Proposition If $A = (a_{l,j})$ is accretive-dissipative, then

$$\sqrt{2} \max_{l} |a_{ll}| \geq \max_{l \neq j} |a_{l,j}|.$$

If A is CSPD, then

$$\max_{l} |a_{ll}| \geq \max_{l,j} |a_{l,j}|.$$

Therefore, if A is accretive-dissipative, then

$$\rho_n(A) = \frac{\max_{i,j,k} |a_{ij}^{(k)}|}{\max_{i,j} |a_{ij}|} \leq \frac{\sqrt{2} \max_{j,k} |a_{jj}^{(k)}|}{\max_{i,j} |a_{ij}|};$$
Proposition If $A = (a_{l,j})$ is accretive-dissipative, then

$$\sqrt{2} \max_l |a_{l,l}| \geq \max_{l \neq j} |a_{l,j}|.$$

If A is CSPD, then

$$\max_l |a_{l,l}| \geq \max_{l,j} |a_{l,j}|.$$

Therefore, if A is accretive-dissipative, then

$$\rho_n(A) = \frac{\max_{i,j,k} |a_{i,j}^{(k)}|}{\max_{i,j} |a_{i,j}|} \leq \frac{\sqrt{2} \max_{j,k} |a_{j,j}^{(k)}|}{\max_{i,j} |a_{i,j}|};$$

if A is CSPD, then

$$\rho_n(A) = \frac{\max_{i,j,k} |a_{i,j}^{(k)}|}{\max_{i,j} |a_{i,j}|} \leq \frac{\max_{j,k} |a_{j,j}^{(k)}|}{\max_{i,j} |a_{i,j}|}.$$
Proposition If $A = (a_{l,j})$ is accretive-dissipative, then
\[\sqrt{2} \max_l |a_{ll}| \geq \max_{l \neq j} |a_{lj}|. \]

If A is CSPD, then
\[\max_l |a_{ll}| \geq \max_{l,j} |a_{lj}|. \]

Therefore, if A is accretive-dissipative, then
\[
\rho_n(A) = \frac{\max_{i,j,k} |a_{ij}^{(k)}|}{\max_{i,j} |a_{ij}|} \leq \frac{\sqrt{2} \max_{j,k} |a_{jj}^{(k)}|}{\max_{i,j} |a_{ij}|};
\]

if A is CSPD, then
\[
\rho_n(A) = \frac{\max_{i,j,k} |a_{ij}^{(k)}|}{\max_{i,j} |a_{ij}|} \leq \frac{\max_{j,k} |a_{jj}^{(k)}|}{\max_{i,j} |a_{ij}|}.
\]

Suppose $\max_{j,k} |a_{jj}^{(k)}| = |a_{j_0j_0}^{(k_0)}|$ for some j_0, k_0.
then if A is accretive-dissipative, then

$$\rho_n(A) \leq \frac{\sqrt{2}|a_{j_0j_0}^{(k_0)}|}{|a_{j_0j_0}|};$$

Fix numbers k_0 and j_0, where $k_0 \in \{1, \ldots, n-1\}$ and $j_0 \geq k_0 + 1$. Consider the $(k_0+1) \times (k_0+1)$ principal submatrix of A, $[A_{k_0u\backslash v^*a}]$.
then if A is accretive-dissipative, then

$$\rho_n(A) \leq \frac{\sqrt{2}|a_{j_0j_0}^{(k_0)}|}{|a_{j_0j_0}|};$$

if A is CSPD, then

$$\rho_n(A) \leq \frac{|a_{j_0j_0}^{(k_0)}|}{|a_{j_0j_0}|}.$$
then if A is accretive-dissipative, then

$$\rho_n(A) \leq \frac{\sqrt{2}|a^{(k_0)}_{j_0j_0}|}{|a_{j_0j_0}|};$$

if A is CSPD, then

$$\rho_n(A) \leq \frac{|a^{(k_0)}_{j_0j_0}|}{|a_{j_0j_0}|}.$$

Fix numbers k_0 and j_0, where $k_0 \in \{1, \ldots, n - 1\}$ and $j_0 \geq k_0 + 1$.
then if A is accretive-dissipative, then

$$\rho_n(A) \leq \frac{\sqrt{2}|a_{j_0j_0}^{(k_0)}|}{|a_{j_0j_0}|};$$

if A is CSPD, then

$$\rho_n(A) \leq \frac{|a_{j_0j_0}^{(k_0)}|}{|a_{j_0j_0}|}.$$

Fix numbers k_0 and j_0, where $k_0 \in \{1, \ldots, n - 1\}$ and $j_0 \geq k_0 + 1$. Consider the $(k_0 + 1) \times (k_0 + 1)$ principal submatrix of A,

$$\begin{bmatrix}
A_{k_0} & u \\
\nu^* & a_{j_0j_0}
\end{bmatrix}.$$
then if A is accretive-dissipative, then

$$\rho_n(A) \leq \frac{\sqrt{2}|a_{j_0j_0}^{(k_0)}|}{|a_{j_0j_0}|};$$

if A is CSPD, then

$$\rho_n(A) \leq \frac{|a_{j_0j_0}^{(k_0)}|}{|a_{j_0j_0}|}.$$

Fix numbers k_0 and j_0, where $k_0 \in \{1, \ldots, n - 1\}$ and $j_0 \geq k_0 + 1$. Consider the $(k_0 + 1) \times (k_0 + 1)$ principal submatrix of A,

$$\begin{bmatrix} A_{k_0} & u \\ v^* & a_{j_0j_0} \end{bmatrix}. $$

We have

$$a_{j_0j_0}^{(k_0)} = a_{j_0j_0} - v^* A_{k_0}^{-1} u.$$
Higham’s conjecture would follow if for any accretive-dissipative matrix $A = \begin{bmatrix} \hat{A} & u \\ v^* & a \end{bmatrix}$,
Higham’s conjecture would follow if for any accretive-dissipative matrix
\(A = \begin{bmatrix} \hat{A} & u \\ v^* & a \end{bmatrix} \),

it holds
\[|a - v^* \hat{A}^{-1} u| \leq 2|a|. \]
Higham’s conjecture would follow if for any accretive-dissipative matrix \(A = \begin{bmatrix} \hat{A} & u \\ v^* & a \end{bmatrix} \),
it holds
\[
|a - v^* \hat{A}^{-1} u| \leq 2|a|.
\]

Equivalently,
\[
det A \leq 2|a| \det \hat{A}.
\]
Connection to determinant inequality

Let $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$ be an $n \times n$ accretive-dissipative matrix with $A_{22} \ m \times m$.

$|\det A| \leq 3 |\det A_{11}| \cdot |\det A_{22}|$.

Lin [Linear Algebra Appl. 438 (2013) 2808-2812]:

$|\det A| \leq c |\det A_{11}| \cdot |\det A_{22}|,$
where $c = \begin{cases} \frac{2m}{3}, & \text{if } m \leq \frac{n}{3}; \\ \frac{2n}{2}, & \text{if } \frac{n}{3} < m \leq \frac{n}{2}. \end{cases}$

I conjectured that $|\det A| \leq 2m |\det A_{11}| \cdot |\det A_{22}|$.
Let \(A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \) be an \(n \times n \) accretive-dissipative matrix with \(A_{22} \ m \times m \).

\[| \det A | \leq 3^m | \det A_{11} | \cdot | \det A_{22} |. \]
Let \(A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \) be an \(n \times n \) accretive-dissipative matrix with \(A_{22} \) \(m \times m \).

\[
|\det A| \leq 3^m |\det A_{11}| \cdot |\det A_{22}|.
\]

Lin [Linear Algebra Appl. 438 (2013) 2808-2812]:

\[
|\det A| \leq c |\det A_{11}| \cdot |\det A_{22}|,
\]

where \(c = \begin{cases}
2^{3m/2}, & \text{if } m \leq n/3; \\
2^{n/2}, & \text{if } n/3 < m \leq n/2.
\end{cases} \)
Connection to determinant inequality

Let $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$ be an $n \times n$ accretive-dissipative matrix with A_{22} $m \times m$.

$$| \det A | \leq 3^m | \det A_{11} | \cdot | \det A_{22} |.$$

Lin [Linear Algebra Appl. 438 (2013) 2808-2812]:

$$| \det A | \leq c | \det A_{11} | \cdot | \det A_{22} |,$$

where $c = \begin{cases} 2^{3m/2}, & \text{if } m \leq n/3; \\ 2^{n/2}, & \text{if } n/3 < m \leq n/2. \end{cases}$

I conjectured that

$$| \det A | \leq 2^m | \det A_{11} | \cdot | \det A_{22} |.$$
Define a sector on the complex plane

\[S_\alpha = \{ z \in \mathbb{C} : \Re z > 0, |\Im z| \leq (\Re z) \tan \alpha \}, \quad \alpha \in [0, \pi/2). \]
Define a sector on the complex plane

\[S_\alpha = \{ z \in \mathbb{C} : \Re z > 0, |\Im z| \leq (\Re z) \tan \alpha \}, \quad \alpha \in [0, \pi/2). \]

If \(A \) is accretive-dissipative, then \(W(e^{i\pi/4} A) = S_{\pi/4} \).
Define a sector on the complex plane

\[S_\alpha = \{ z \in \mathbb{C} : \Re z > 0, |\Im z| \leq (\Re z) \tan \alpha \}, \quad \alpha \in [0, \pi/2). \]

If \(A \) is accretive-dissipative, then \(W(e^{i\pi/4}A) = S_{\pi/4} \).

Basic properties. Let \(A, B \) be \(n \times n \) complex matrices. If \(W(A), W(B) \subset S_\alpha \), then
Define a sector on the complex plane

\[S_{\alpha} = \{ z \in \mathbb{C} : \Re z > 0, |\Im z| \leq (\Re z) \tan \alpha \}, \quad \alpha \in [0, \pi/2). \]

If \(A \) is accretive-dissipative, then \(W(e^{i\pi/4}A) = S_{\pi/4} \).

Basic properties. Let \(A, B \) be \(n \times n \) complex matrices. If \(W(A), W(B) \subset S_{\alpha} \), then

\[W(A_{11}) \subset S_{\alpha}; \]
Define a sector on the complex plane

\[S_\alpha = \{ z \in \mathbb{C} : \Re z > 0, |\Im z| \leq (\Re z) \tan \alpha \}, \quad \alpha \in [0, \pi/2). \]

If \(A \) is accretive-dissipative, then \(W(e^{i\pi/4}A) = S_{\pi/4} \).

Basic properties. Let \(A, B \) be \(n \times n \) complex matrices. If \(W(A), W(B) \subset S_\alpha \), then

\[
W(A_{11}) \subset S_\alpha; \\
W(A + B) \subset S_\alpha;
\]
Define a sector on the complex plane

\[S_\alpha = \{ z \in \mathbb{C} : \Re z > 0, |\Im z| \leq (\Re z) \tan \alpha \}, \quad \alpha \in [0, \pi/2). \]

If \(A \) is accretive-dissipative, then \(W(e^{i\pi/4} A) = S_{\pi/4} \).

Basic properties. Let \(A, B \) be \(n \times n \) complex matrices. If \(W(A), W(B) \subset S_\alpha \), then

\[W(A_{11}) \subset S_\alpha; \]

\[W(A + B) \subset S_\alpha; \]

\[W(A^{-1}) \subset S_\alpha; \]
Define a sector on the complex plane

\[S_\alpha = \{ z \in \mathbb{C} : \Re z > 0, |\Im z| \leq (\Re z) \tan \alpha \}, \quad \alpha \in [0, \pi/2). \]

If \(A \) is accretive-dissipative, then \(W(e^{i\pi/4} A) = S_{\pi/4} \).

Basic properties. Let \(A, B \) be \(n \times n \) complex matrices. If \(W(A), W(B) \subset S_\alpha \), then

\[
W(A_{11}) \subset S_\alpha; \\
W(A + B) \subset S_\alpha; \\
W(A^{-1}) \subset S_\alpha; \\
W(A/A_{11}) \subset S_\alpha.
\]
Higham’s conjecture was confirmed by Drury [Linear Algebra Appl. 439 (2013) 3129-3133].
Higham’s conjecture was confirmed by Drury [Linear Algebra Appl. 439 (2013) 3129-3133].

He also conjectured that if $W(A) \subset S_\alpha$, then

$$|\det A| \leq (\sec \alpha)^{2m} |\det A_{11}| \cdot |\det A_{22}|.$$
Higham’s conjecture was confirmed by Drury [Linear Algebra Appl. 439 (2013) 3129-3133].

He also conjectured that if $W(A) \subset S_\alpha$, then

$$|\det A| \leq (\sec \alpha)^{2m} |\det A_{11}| \cdot |\det A_{22}|.$$

Theorem (Li-Sze 2014) If $W(A) \subset S_\alpha$, then

$$|\det A| \leq (\sec \alpha)^{2m} |\det A_{11}| \cdot |\det A_{22}|.$$
Theorem (Li-Sze 2014) If $W(A) \subset S_\alpha$, then

$$|\det A| \leq (\sec \alpha)^{2m} |\det A_{11}| \cdot |\det A_{22}|.$$

Equivalently,

$$\prod_{j=1}^{m} \sigma_j(A/A_{11}) \leq (\sec \alpha)^{2m} \prod_{j=1}^{m} \sigma_j(A_{22}),$$

where $\sigma_j(\cdot)$ means the j-th largest singular value.
Theorem (Li-Sze 2014) If $W(A) \subset S_\alpha$, then

$$|\det A| \leq (\sec \alpha)^{2m} |\det A_{11}| \cdot |\det A_{22}|.$$

Equivalently,

$$\prod_{j=1}^{m} \sigma_j(A/A_{11}) \leq (\sec \alpha)^{2m} \prod_{j=1}^{m} \sigma_j(A_{22}),$$

where $\sigma_j(\cdot)$ means the j-th largest singular value.

Drury and I [Oper. & Matrices (2014) to appear]: If $W(A) \subset S_\alpha$, then

$$\sigma_j(A/A_{11}) \leq \sec^2(\alpha) \sigma_j(A_{22}), \quad j = 1, \ldots, m.$$
Fan and Hoffman: For every $n \times n$ complex matrix A,

$$\lambda_j(\Re A) \leq \sigma_j(A), \quad j = 1, \ldots, n.$$
Fan and Hoffman: For every $n \times n$ complex matrix A,

$$\lambda_j(\Re A) \leq \sigma_j(A), \quad j = 1, \ldots, n.$$

A decomposition lemma: If $W(A) \subset S_\alpha$, then there exist an invertible matrix X and a unitary and diagonal matrix $Z = \text{diag}(e^{i\theta_1}, \ldots, e^{i\theta_n})$ with all $|\theta_j| \leq \alpha$ such that $A = XZX^*$.
Singular value inequalities

Fan and Hoffman: For every $n \times n$ complex matrix A,

$$\lambda_j(\Re A) \leq \sigma_j(A), \quad j = 1, \ldots, n.$$

A decomposition lemma: If $W(A) \subset S_\alpha$, then there exist an invertible matrix X and a unitary and diagonal matrix $Z = \text{diag}(e^{i\theta_1}, \ldots, e^{i\theta_n})$ with all $|\theta_j| \leq \alpha$ such that $A = XZX^*$. Such a matrix Z is unique up to permutation. [F. Zhang, Linear and Multilinear Algebra (2014) to appear].
Singular value inequalities

Fan and Hoffman: For every $n \times n$ complex matrix A,

$$\lambda_j(\Re A) \leq \sigma_j(A), \quad j = 1, \ldots, n.$$

A decomposition lemma: If $W(A) \subset S_\alpha$, then there exist an invertible matrix X and a unitary and diagonal matrix $Z = \text{diag}(e^{i\theta_1}, \ldots, e^{i\theta_n})$ with all $|\theta_j| \leq \alpha$ such that $A = XZX^*$. Such a matrix Z is unique up to permutation. [F. Zhang, Linear and Multilinear Algebra (2014) to appear].

A technical lemma: Let $X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$, $Y = \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix}$ be $n \times n$ matrices, where X_2, Y_2 are $m \times n$, such that $YX^* = I_n$. Then

$$\lambda_j(X_2X_2^*)\lambda_{m+1-j}(Y_2Y_2^*) \geq 1, \quad j = 1, \ldots, m.$$
Theorem (Drury-Lin 2014) For every $n \times n$ complex matrix A such that $W(A) \subset S_\alpha$, it holds

$$
\sigma_j(A) \leq \sec^2(\alpha) \lambda_j(\Re A), \quad j = 1, \ldots, n.
$$
Theorem (Drury-Lin 2014) For every $n \times n$ complex matrix A such that $W(A) \subset S_\alpha$, it holds

$$
\sigma_j(A) \leq \sec^2(\alpha) \lambda_j(\Re A), \quad j = 1, \ldots, n.
$$

Corollary Let X, Y be $n \times n$ positive semidefinite matrices. Then

$$
\sigma_j(X + iY) \leq \sqrt{2} \lambda_j(X + Y), \quad j = 1, \ldots, n.
$$
Theorem (Drury-Lin 2014) For every $n \times n$ complex matrix A such that $W(A) \subset S_\alpha$, it holds

$$\sigma_j(A) \leq \sec^2(\alpha)\lambda_j(\Re A), \quad j = 1, \ldots, n.$$

Corollary Let X, Y be $n \times n$ positive semidefinite matrices. Then

$$\sigma_j(X + iY) \leq \sqrt{2}\lambda_j(X + Y), \quad j = 1, \ldots, n.$$

Proof. $(1 - i)(X + iY) = (X + Y) + i(Y - X)$ has its numerical range in $S_{\frac{\pi}{4}}$.

Theorem (Drury-Lin 2014) For every $n \times n$ complex matrix A such that $W(A) \subset S_\alpha$, it holds

$$\sigma_j(A) \leq \sec^2(\alpha)\lambda_j(\Re A), \quad j = 1, \ldots, n.$$

Corollary Let X, Y be $n \times n$ positive semidefinite matrices. Then

$$\sigma_j(X + iY) \leq \sqrt{2}\lambda_j(X + Y), \quad j = 1, \ldots, n.$$

Proof. $(1 - i)(X + iY) = (X + Y) + i(Y - X)$ has its numerical range in $S_{\pi/4}$. It follows that

$$\sqrt{2}\sigma_j(X + iY) = \sigma_j((X + Y) + i(Y - X)) \leq 2\lambda_j(X + Y).$$
Theorem (Drury-Lin 2014) For every $n \times n$ complex matrix A such that $W(A) \subset S_\alpha$, it holds

$$\sigma_j(A) \leq \sec^2(\alpha)\lambda_j(\Re A), \quad j = 1, \ldots, n.$$

Corollary Let X, Y be $n \times n$ positive semidefinite matrices. Then

$$\sigma_j(X + iY) \leq \sqrt{2}\lambda_j(X + Y), \quad j = 1, \ldots, n.$$

Proof. $(1 - i)(X + iY) = (X + Y) + i(Y - X)$ has its numerical range in $S_{\frac{\pi}{4}}$. It follows that

$$\sqrt{2}\sigma_j(X + iY) = \sigma_j((X + Y) + i(Y - X)) \leq 2\lambda_j(X + Y).$$

Bhatia-Kittaneh [Linear Algebra Appl. 431 (2009) 1502-1508]: Let X, Y be $n \times n$ positive semidefinite matrices. Then

$$\lambda_j(X + Y) \leq \sqrt{2}\sigma_j(X + iY), \quad j = 1, \ldots, n.$$
Obviously,

\[a, b \geq 0 \implies |a + bi| \leq a + b. \]
Obviously,

\[a, b \geq 0 \implies |a + bi| \leq a + b. \]

It is however, not true that for every \(n \times n \) positive semidefinite matrices

\[\sigma_j(X + iY) \leq \lambda_j(X + Y), \quad j = 1, \ldots, n. \]
Obviously,
\[a, b \geq 0 \implies |a + bi| \leq a + b. \]

It is however, not true that for every \(n \times n \) positive semidefinite matrices
\[\sigma_j(X + iY) \leq \lambda_j(X + Y), \quad j = 1, \ldots, n. \]

Example Take
\[
X = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \quad Y = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}.
\]

A calculation shows \(\sigma_2(X + iY) \approx 0.4569 > \lambda_2(X + Y) \approx 0.3820. \)
Thank You!