Higher-rank Numerical Range and Quantum Error Correction

Abbas Salemi

Joint with S.A. Mousavi

Department of Mathematics
Faculty of Mathematics and Computer
Shahid Bahonar University of Kerman

12th Workshop on the Numerical Ranges and Numerical Radii
28 July, - 1 August, 2014
Sanya, Hainan Province in southern China
Contents

1. Operator Approach to Quantum Error Correction

2. Joint Higher-rank Numerical Range

3. Quantum Error Correction of Pauli Channels

4. References
Contents

1 Operator Approach to Quantum Error Correction

2 Joint Higher-rank Numerical Range

3 Quantum Error Correction of Pauli Channels

4 References
In quantum computing, information is stored in quantum bits, abbreviated as qubits.
- In quantum computing, information is stored in **quantum bits**, abbreviated as **qubits**.

- Mathematically, a qubit is represented by a 2×2 rank one Hermitian matrix $Q = |\mathcal{R}\rangle \langle \mathcal{R}|$, where $|\mathcal{R}\rangle \in \mathbb{C}^2$ is a unit vector.
In quantum computing, information is stored in quantum bits, abbreviated as qubits.

Mathematically, a qubit is represented by a 2×2 rank one Hermitian matrix $Q = |\mathcal{R}\rangle \langle \mathcal{R}|$, where $|\mathcal{R}\rangle \in \mathbb{C}^2$ is a unit vector.

A state of N-qubits Q_1, \ldots, Q_N is represented by their tensor products in M_n with $n = 2^N$.
In quantum computing, information is stored in **quantum bits**, abbreviated as **qubits**.

Mathematically, a qubit is represented by a 2×2 rank one Hermitian matrix $Q = |\mathcal{R}\rangle \langle \mathcal{R}|$, where $|\mathcal{R}\rangle \in \mathbb{C}^2$ is a unit vector.

A state of N-qubits Q_1, \ldots, Q_N is represented by their tensor products in M_n with $n = 2^N$.

A quantum channel \mathcal{E} for states of N-qubits corresponds to a **trace preserving completely positive linear maps** $\mathcal{E} : M_n \rightarrow M_n$ of the form

$$\mathcal{E}(\rho) = \sum_{j=1}^{r} E_j \rho E_j^\dagger$$

with

$$\sum_{j} E_j^\dagger E_j = I$$

[Choi (1975)]
In quantum computing, information is stored in quantum bits, abbreviated as qubits.

Mathematically, a qubit is represented by a 2×2 rank one Hermitian matrix $Q = |\mathcal{R}\rangle \langle \mathcal{R}|$, where $|\mathcal{R}\rangle \in \mathbb{C}^2$ is a unit vector.

A state of N-qubits Q_1, \ldots, Q_N is represented by their tensor products in M_n with $n = 2^N$.

A quantum channel \mathcal{E} for states of N-qubits corresponds to a trace preserving completely positive linear maps $\mathcal{E} : M_n \to M_n$ of the form

$$\mathcal{E}(\rho) = \sum_{j=1}^{r} E_j \rho E_j^\dagger \quad \text{with} \quad \sum_j E_j^\dagger E_j = I \quad \text{[Choi (1975)]}$$

The matrices E_1, \ldots, E_m are interpreted as the error(noise) operators of the quantum channel \mathcal{E}.
Notations

Pauli matrices

\[\sigma_0 := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \sigma_1 := \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \]
\[\sigma_2 := \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \]

- \(\sigma_{(j_1, j_2, \ldots, j_N)} := \sigma_{j_1} \otimes \sigma_{j_2} \cdots \otimes \sigma_{j_N}, \quad (j_1, j_2, \ldots, j_N) \in \{0, 1, 2, 3\}^N. \)
- \(X_{j} := \sigma_{(0, \ldots, 0, 1_{j^{th}} 0, \ldots, 0)}, \quad Y_{j} := \sigma_{(0, \ldots, 0, 2_{j^{th}} 0, \ldots, 0)}, \) and \(Z_{j} := \sigma_{(0, \ldots, 0, 3_{j^{th}} 0, \ldots, 0)}. \)
Pauli group

The N-qubit Pauli group \mathcal{P}_N is defined as the sub-group of the unitary group \mathcal{U}_n on N-qubits generated by the X_j, Y_j and Z_j, $j = 1, \ldots, N$, as follows

$$\mathcal{P}_N := \langle X_j, Y_j, Z_j : 1 \leq j \leq N \rangle.$$
Pauli group

The N-qubit Pauli group \mathcal{P}_N is defined as the sub-group of the unitary group \mathcal{U}_n on N-qubits generated by the X_j, Y_j and Z_j, $j = 1, \ldots, N$, as follows

$$\mathcal{P}_N := \langle X_j, Y_j, Z_j : 1 \leq j \leq N \rangle.$$

$$\mathcal{P}_N := \{ \alpha \sigma_{(j_1, j_2, \ldots, j_N)} : j_l \in \{0, 1, 2, 3\}, \alpha \in \{ \pm 1, \pm \iota \} \}$$
Pauli group

The \(N\)-qubit Pauli group \(\mathcal{P}_N\) is defined as the sub-group of the unitary group \(\mathcal{U}_n\) on \(N\)-qubits generated by the \(X_j, Y_j, Z_j\), \(j = 1, \ldots, N\), as follows

\[\mathcal{P}_N := \langle X_j, Y_j, Z_j : 1 \leq j \leq N \rangle.\]

\[\mathcal{P}_N := \{ \alpha \sigma_{(j_1, j_2, \ldots, j_N)} : j_l \in \{0, 1, 2, 3\}, \alpha \in \{\pm 1, \pm i\}\} \]

Pauli channel

A quantum channel is called a Pauli channel if each of its error operators are scalar multiple of elements in Pauli group \(\mathcal{P}_N\).
Correctable quantum channel

Quantum error correction code

A $k(= 2^p)$-dimensional subspace V of \mathbb{C}^n is called a quantum error correction code (QECC) for \mathcal{E}.
Correctable quantum channel

Quantum error correction code

A $k(=2^p)$-dimensional subspace \mathbb{V} of \mathbb{C}^n is called a quantum error correction code (QECC) for \mathcal{E} if there exists a quantum channel $\mathcal{R} : M_n \to M_n$ such that

$$\mathcal{R} \circ \mathcal{E}(\rho) = \rho \quad \text{for all} \quad P_\mathbb{V} \rho P_\mathbb{V} = \rho,$$

where $P_\mathbb{V}$ is an orthogonal projection onto the subspace \mathbb{V}.
Operator approach to quantum error correction

If one write $P_V = U(I_k \oplus 0)U^\dagger$ for some unitary U, then

$$P_V \rho P_V = \rho \iff \rho = U \begin{bmatrix} \hat{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^\dagger.$$
Operator approach to quantum error correction

- If one write $P_{V} = U(I_{k} \oplus 0)U^{\dagger}$ for some unitary U, then

$$P_{V}\rho P_{V} = \rho \iff \rho = U \begin{bmatrix} \hat{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^{\dagger}.$$

- The equation of recovery channel can be restated as

$$\mathcal{R} \circ \mathcal{E}(U \begin{bmatrix} \hat{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^{\dagger}) = U \begin{bmatrix} \hat{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^{\dagger} \text{ for all } \hat{\rho} \in M_{k}.$$
Operator approach to quantum error correction

- If one write $P_V = U(I_k \oplus 0)U^\dagger$ for some unitary U, then

\[P_V \rho P_V = \rho \iff \rho = U \begin{bmatrix} \hat{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^\dagger. \]

- The equation of recovery channel can be restated as

\[\mathcal{R} \circ \mathcal{E}(U \begin{bmatrix} \hat{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^\dagger) = U \begin{bmatrix} \hat{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^\dagger \text{ for all } \hat{\rho} \in M_k. \]
Operator approach to quantum error correction

- If one write $P_V = U(I_k \oplus 0)U^\dagger$ for some unitary U, then
 \[
P_V \rho P_V = \rho \iff \rho = U \begin{bmatrix} \hat{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^\dagger.
 \]

- The equation of recovery channel can be restated as
 \[
 \mathcal{R} \circ \mathcal{E} \left(U \begin{bmatrix} \hat{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^\dagger \right) = U \begin{bmatrix} \hat{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^\dagger \quad \text{for all} \quad \hat{\rho} \in M_k.
 \]

$\hat{\rho} \rightarrow \rho = U(\ket{0}\bra{0} \otimes \hat{\rho}) U^\dagger$

p-qubit data

Encoding to N-qubit
Operator approach to quantum error correction

- If one write $P_V = U(I_k \oplus 0)U^\dagger$ for some unitary U, then

$$P_V \rho P_V = \rho \iff \rho = U \begin{bmatrix} \hat{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^\dagger.$$

- The equation of recovery channel can be restated as

$$\mathcal{R} \circ \mathcal{E}(U \begin{bmatrix} \hat{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^\dagger) = U \begin{bmatrix} \hat{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^\dagger \text{ for all } \hat{\rho} \in M_k.$$

\[\hat{\rho} \xrightarrow{\rho = U(|0\rangle \langle 0| \otimes \hat{\rho})U^\dagger} \mathcal{E}\]
Operator approach to quantum error correction

- If one write $P_V = U(I_k \oplus 0)U^\dagger$ for some unitary U, then

$$P_V \rho P_V = \rho \iff \rho = U \begin{bmatrix} \hat{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^\dagger.$$

- The equation of recovery channel can be restated as

$$\mathcal{R} \circ \mathcal{E}(U \begin{bmatrix} \hat{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^\dagger) = U \begin{bmatrix} \hat{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^\dagger \quad \text{for all} \quad \hat{\rho} \in M_k.$$
Operator approach to quantum error correction

- If one write $P_{\mathcal{V}} = U(I_k \oplus 0)U^\dagger$ for some unitary U, then

\[P_{\mathcal{V}} \rho P_{\mathcal{V}} = \rho \iff \rho = U \begin{bmatrix} \hat{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^\dagger. \]

- The equation of recovery channel can be restated as

\[\mathcal{R} \circ \mathcal{E}(U \begin{bmatrix} \hat{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^\dagger) = U \begin{bmatrix} \hat{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^\dagger \text{ for all } \hat{\rho} \in M_k. \]

ρ-qubit data $\xrightarrow{\text{Encoding to } N}$-qubit $\xrightarrow{\text{Noisy channel}}$ $\xrightarrow{\text{Recovery channel}}$ $\xrightarrow{\text{Decoding to } \rho}$-qubit

\[\rho = U(|0\rangle\langle 0| \otimes \hat{\rho})U^\dagger \]

\[\mathcal{R} \circ \mathcal{E}(U \begin{bmatrix} \hat{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^\dagger) = U \begin{bmatrix} \hat{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^\dagger \text{ for all } \hat{\rho} \in M_k. \]
Operator approach to quantum error correction

- If one write $P_V = U(I_k \oplus 0)U^\dagger$ for some unitary U, then

$$P_V \rho P_V = \rho \iff \rho = U \begin{bmatrix} \hat{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^\dagger.$$

- The equation of recovery channel can be restated as

$$\mathcal{R} \circ \mathcal{E}(U \begin{bmatrix} \hat{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^\dagger) = U \begin{bmatrix} \hat{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^\dagger \text{ for all } \hat{\rho} \in M_k.$$

\[\hat{\rho} \rightarrow \rho = U(\langle 0 | \otimes \hat{\rho})U^\dagger \rightarrow \mathcal{E} \rightarrow \mathcal{R} \rightarrow \text{tr}_1(U^\dagger \rho U) \rightarrow \hat{\rho}\]

p-qubit data

Encoding to N-qubit

Noisy channel

Recovery channel

Decoding to p-qubit
If one write $P_V = U(I_k \oplus 0)U^\dagger$ for some unitary U, then

$$P_V \rho P_V = \rho \iff \rho = U \begin{bmatrix} \hat{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^\dagger.$$

The equation of recovery channel can be restated as

$$\mathcal{R} \circ \mathcal{E}(U \begin{bmatrix} \hat{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^\dagger) = U \begin{bmatrix} \hat{\rho} & 0 \\ 0 & 0 \end{bmatrix} U^\dagger \text{ for all } \hat{\rho} \in M_k.$$

When will such quantum error correction code exist??
Knill-Laflamme condition

Existence of QECC [Knill, Laflamme (1996)]

A quantum channel $\mathcal{E}(\rho) = \sum_{j=1}^{r} E_j \rho E_j^\dagger$ is correctable if and only if there exist γ_{ij} such that

$$P_V E_i^\dagger E_j P_V = \gamma_{ij} P_V$$

for all $1 \leq i, j \leq r$.
(QEC condition)
Knill-Laflamme condition

Existence of QECC [Knill, Laflamme (1996)]

A quantum channel $\mathcal{E}(\rho) = \sum_{j=1}^{r} E_j \rho E_j^\dagger$ is correctable if and only if there exist γ_{ij} such that

$$P_V E_i^\dagger E_j P_V = \gamma_{ij} P_V$$

for all $1 \leq i, j \leq r$. (QEC condition)

Definition (rank-k numerical range)

Let $A \in M_n(\mathbb{C})$ and let $k \geq 1$.

$$\Lambda_k(A) = \{ \lambda \in \mathbb{C} : W^\dagger A W = \lambda I_k \text{ with } W^\dagger W = I_k \}.$$
Contents

1 Operator Approach to Quantum Error Correction

2 Joint Higher-rank Numerical Range

3 Quantum Error Correction of Pauli Channels

4 References
Joint rank-k numerical range

$$A = (A_1, \ldots, A_m) \in M_n^m$$

$$a = (a_1, \ldots, a_m) \in \mathbb{C}^{1 \times m}$$

$$\Lambda_k(A) = \{a \in \mathbb{C}^{1 \times m} : PAP = aP \}
\text{for some rank-}k \text{ orthogonal projection } P.$$
Joint rank-k numerical range

\[A = (A_1, \ldots, A_m) \in M_n^m \quad \text{and} \quad a = (a_1, \ldots, a_m) \in \mathbb{C}^{1 \times m} \]

\[\Lambda_k(A) = \{ a \in \mathbb{C}^{1 \times m} : PAP = aP \} \]

for some rank-k orthogonal projection P.

- A channel \mathcal{E} has a k-dimensional QECC if and only if

 \[\Lambda_k(E_1^\dagger E_1, E_1^\dagger E_2, \ldots, E_1^\dagger E_r, E_2^\dagger E_1, \ldots, E_r^\dagger E_r) \neq \emptyset. \]
Joint rank-k numerical range

$A = (A_1, \ldots, A_m) \in M_n^m$ \hspace{1cm} $a = (a_1, \ldots, a_m) \in \mathbb{C}^{1 \times m}$

$\Lambda_k(A) = \{a \in \mathbb{C}^{1 \times m} : PAP = aP \}
\text{ for some rank-}k \text{ orthogonal projection } P \}.$

- A channel \mathcal{E} has a k-dimensional QECC if and only if

\[\Lambda_k(E_1^\dagger E_1, E_1^\dagger E_2, \ldots, E_1^\dagger E_r, E_2^\dagger E_1, \ldots, E_r^\dagger E_r) \neq \emptyset. \]

- Equivalently,

\[\Lambda_k(A) = \{a \in \mathbb{C}^{1 \times m} : W^\dagger AW = aI_k \text{ with } W^\dagger W = I_k \}. \]
Joint rank-k numerical range

\[\mathbf{A} = (A_1, \ldots, A_m) \in M_n^m \quad \mathbf{a} = (a_1, \ldots, a_m) \in \mathbb{C}^{1 \times m} \]

\[\Lambda_k(\mathbf{A}) = \{ \mathbf{a} \in \mathbb{C}^{1 \times m} : P\mathbf{A}P = \mathbf{a}P \text{ for some rank}-k \text{ orthogonal projection } P \} \].

- A channel \mathcal{E} has a k-dimensional QECC if and only if
 \[\Lambda_k(E_1^\dagger E_1, E_1^\dagger E_2, \ldots, E_1^\dagger E_r, E_2^\dagger E_1, \ldots, E_r^\dagger E_r) \neq \emptyset. \]
- Equivalently,
 \[\Lambda_k(\mathbf{A}) = \{ \mathbf{a} \in \mathbb{C}^{1 \times m} : W^\dagger \mathbf{A} W = \mathbf{a}I_k \text{ with } W^\dagger W = I_k \} \].
- Also, $\mathbf{a} \in \Lambda_k(\mathbf{A})$ if and only if there is a unitary U such that
 \[U^\dagger \mathbf{A} U = \begin{bmatrix} \mathbf{a}I_k & * \\ * & * \end{bmatrix}. \]
Joint rank-k numerical range

- Write $A_j = H_{2j-1} + \nu H_{2j}$ with Hermitian matrices

\[H_{2j-1} = \frac{1}{2}(A_j + A_j^\dagger) \quad \text{and} \quad H_{2j} = \frac{1}{2\nu}(A_j - A_j^\dagger). \]

- One can always identify

\[\Lambda_k(A_1, \ldots, A_m) \cong \Lambda_k(H_1, H_2, \ldots, H_{2m-1}, H_{2m}) \]

\[\subseteq \mathbb{C}^{1 \times m} \quad \text{and} \quad \subseteq \mathbb{R}^{1 \times 2m} \]

- One can focus on $\Lambda_k(A_1, \ldots, A_m)$ with A_1, \ldots, A_m Hermitian.

- In particular, $\Lambda_k(A_1 + \nu A_2) \cong \Lambda_k(A_1, A_2)$.
Definition

For $A = (A_1, \ldots, A_m) \in \mathcal{H}^m_n$, define

$$
\Omega_k(A) = \left\{ a \in \mathbb{R}^{1 \times m} : c \cdot a \leq \lambda_k(c \cdot A) \text{ for all unit vector } c \in \mathbb{R}^{1 \times m} \right\},
$$

where $\lambda_k(H)$ denotes the k-th largest eigenvalue of the Hermitian matrix H.
Definition

For $A = (A_1, \ldots, A_m) \in \mathcal{H}_n^m$, define

$$\Omega_k(A) = \left\{ a \in \mathbb{R}^{1 \times m} : c \cdot a \leq \lambda_k(c \cdot A) \text{ for all unit vector } c \in \mathbb{R}^{1 \times m} \right\},$$

where $\lambda_k(H)$ denotes the k-th largest eigenvalue of the Hermitian matrix H.

Observations

- $\Lambda_k(A) \subseteq \Omega_k(A)$;
- $\Lambda_k(A) = \Omega_k(A)$, when $m = 1$; [Choi, Kribs, Zyczkowski (2006)]
- $\Lambda_k(A) = \Omega_k(A)$, when $m = 2$; [Li and Sze (2008)]
JHRNR of a commutative family

Let \{ A_1, \ldots, A_m \} be a commuting family in \(\mathcal{H}_n \).

Definition

The joint spectrum of Hermitian \(m \)-tuple \(A \in \mathcal{H}_n^m \) is defined as

\[
\text{spec}(A) := \{ \lambda = (\lambda_1, \ldots, \lambda_m) \in \mathbb{R}^{1 \times m} : \exists 0 \neq x \in \mathbb{C}^n \text{ s.t. } Ax = \lambda x \}.
\]
Let \(\{ A_1, \ldots, A_m \} \) be a commuting family in \(\mathcal{H}_n \).

Definition

The **joint spectrum** of Hermitian \(m \)-tuple \(A \in \mathcal{H}_n^m \) is defined as

\[
\text{spec}(A) := \{ \lambda = (\lambda_1, \ldots, \lambda_m) \in \mathbb{R}^{1 \times m} : \exists \ 0 \neq x \in \mathbb{C}^n \text{ s.t. } Ax = \lambda x \}.
\]

Definition

Let \(\text{spec}(A) = \{ \lambda_1, \ldots, \lambda_n \} \). Define

\[
\Delta_k(A) := \{ a \in \mathbb{R}^{1 \times m} : a \in \text{conv} (\{ \lambda_j : j \in S_i \}) \text{ for some disjoint subsets } S_1, S_2, \ldots, S_k \subseteq \{ 1, \ldots, n \} \}
\]
JHRNR of a commuting family

Proposition

Let \(\{ A_1, \ldots, A_m \} \) be a commuting family in \(\mathcal{H}_n \), and let \(A = (A_1, \ldots, A_m) \), with \(\text{spec}(A) = \{ \lambda_1, \ldots, \lambda_n \} \). Then

\[
\Delta_k(A) \subseteq \Lambda_k(A) \subseteq \Omega_k(A) = \bigcap_{\Gamma \subseteq \{1, \ldots, n\}, |\Gamma| = n-k+1} \text{conv} \{ \lambda_j : j \in \Gamma \}.
\]
JHRNR of a commuting family

Proposition

Let \(\{ A_1, \ldots, A_m \} \) be a commuting family in \(\mathcal{H}_n \), and let \(A = (A_1, \ldots, A_m) \), with \(\text{spec}(A) = \{ \lambda_1, \ldots, \lambda_n \} \). Then

\[
\Delta_k(A) \subseteq \Lambda_k(A) \subseteq \Omega_k(A) = \bigcap_{\Gamma \subseteq \{1, \ldots, n\}, \ |\Gamma| = n-k+1} \text{conv} \{ \lambda_j : j \in \Gamma \}.
\]

Fact

Let \(\{ A_1, \ldots, A_m \} \) be a commuting family in \(\mathcal{H}_n \) and let \(A = (A_1, \ldots, A_m) \). Then

\[
\Lambda_1(A) = \Omega_1(A) = \text{conv}(\text{spec}(A)).
\]
Let \{ A_1, \ldots, A_m \} \subseteq \mathcal{H}_n and let \(A = (A_1, \ldots, A_m) \). We know that
\[
\Lambda_k(A) \subseteq \Lambda_{kk'}(A \otimes I_{k'}).
\]

Question

\[
\Lambda_{kk'}(A \otimes I_{k'}) \supseteq \Lambda_k(A).
\]

Note that \(\Omega_{kk'}(A \otimes I_{k'}) = \Omega_k(A) \).
Let \(\{ A_1, \ldots, A_m \} \subseteq \mathcal{H}_n \) and let \(A = (A_1, \ldots, A_m) \). We know that

\[
\Lambda_k(A) \subseteq \Lambda_{kk'}(A \otimes I_{k'}).
\]

Question

\[
\Lambda_{kk'}(A \otimes I_{k'}) \subseteq \Lambda_k(A) ?
\]

Note that \(\Omega_{kk'}(A \otimes I_{k'}) = \Omega_k(A) \).
Notations

- As the phase factors $\mathcal{I} = \{ \pm 1, \pm \iota \}$ do not affect emptiness and non-emptiness of joint higher-rank numerical range of some elements in \mathcal{P}_N, we define an equivalence relation on \mathcal{P}_N as follows:

 $$g \sim h \iff g = \alpha h \quad \text{for some } \alpha \in \mathcal{I}.$$

- Suppose $[g] = \{ \alpha g : \alpha \in \mathcal{I} \}$ is equivalence class of an operator $g \in \mathcal{P}_N$. We suppose $[\alpha \sigma_{(j_1, \ldots, j_N)}] = \sigma_{(j_1, \ldots, j_N)}, \alpha \in \mathcal{I}$. This means that $\sigma_{(j_1, \ldots, j_N)}$ is the representative of the class $[\alpha \sigma_{(j_1, \ldots, j_N)}]$.

- Let S be a subset of \mathcal{P}_N. We indicate the set of all representatives of equivalence classes in S as $[S] = \{ [g] : g \in S \}$. So

 $$[\mathcal{P}_N] = \{ \sigma_{(j_1, \ldots, j_N)} : (j_1, \ldots, j_N) \in \{ 0, 1, 2, 3 \}^N \}.$$

Let \(\{ A_1, A_2, A_3 \} \subseteq [\mathcal{P}_N] \) be an independent set, such that none of its members is \(I_{2^N} \) and let \(A = (A_1, A_2, A_3) \).

- If \(A_i A_j = -A_j A_i, i \neq j \), then for every \(1 \leq k \leq 2^{N-1} \) we have
 - If \(A_1 A_2 \) and \(A_3 \) are dependent and \(2^{N-2} < k \leq 2^{N-1} \), then

 \[
 \text{conv} (\Lambda_k(A)) = \Omega_k(A) = \{ a \in \mathbb{R}^{1 \times 3} : \|a\| \leq 1 \};
 \]

- Otherwise,

 \[
 \Lambda_k(A) = \Omega_k(A) = \{ a \in \mathbb{R}^{1 \times 3} : \|a\| \leq 1 \}. \]
Higher-rank Numerical Range and Quantum Error Correction
Joint Higher-rank Numerical Range

JHRNR of three elements in P_N

- If $A_1 A_2 = -A_2 A_1$ and $A_1 A_3 = -A_3 A_1$, but $A_2 A_3 = A_3 A_2$, then
 - for every $2^{N-2} < k \leq 2^{N-1}$ we have
 \[
 \Lambda_k(A) = \Omega_k(A) = \{ (a_1, 0, 0) \in \mathbb{R}^{1 \times 3} : |a_1| \leq 1 \};
 \]
- For every $1 \leq k \leq 2^{N-2}$ we have
 \[
 \Lambda_k(A) = \Omega_k(A) = \{ (a_1, a_2, a_3) \in \mathbb{R}^{1 \times 3} : |a_1| \leq 1, |a_2| \leq \sqrt{1 - a_1^2}, |a_3| \leq \sqrt{1 - a_1^2} \};
 \]
If $A_1 A_2 = A_2 A_1$, and $A_1 A_3 = A_3 A_1$, but $A_2 A_3 = -A_3 A_2$, then

- for every $2^{N-2} < k \leq 2^{N-1}$ we have

$$\Lambda_k(A) = \Omega_k(A) = \{(0, 0, 0)\};$$

- for every $1 \leq k \leq 2^{N-2}$ we have

$$\Lambda_k(A) = \Omega_k(A)$$

$$= \{(a_1, a_2, a_3) \in \mathbb{R}^{1 \times 3} : |a_1| \leq 1, |a_2|^2 + |a_3|^2 \leq 1\}.$$
JHRNR of three elements in \mathcal{P}_N

- Let $A_iA_j = A_jA_i$.
 - If A_1A_2 and A_3 are dependent, then

 $\Lambda_k(A) = \Omega_k(A) = \emptyset$, for every $2^{N-2} < k \leq 2^{N-1}$;

 $\Lambda_k(A) = \Omega_k(A) = \text{conv}(\text{spec}(A))$, for every $1 \leq k \leq 2^{N-2}$;

 - If A_1A_2 and A_3 are independent, then

 $\Lambda_k(A) = \Omega_k(A) = \{(0,0,0)\}$, for every $2^{N-2} < k \leq 2^{N-1}$;

 $\Lambda_k(A) = \Omega_k(A) = \text{conv}\{(\pm 1,0,0), (0,\pm 1,0), (0,0,\pm 1)\}$, for every $2^{N-3} < k \leq 2^{N-2}$;

 $\Lambda_k(A) = \Omega_k(A) = \text{conv}(\text{spec}(A))$, for every $1 \leq k \leq 2^{N-3}$.

Let \(\{ A_1, A_2, A_3 \} \subseteq [\mathcal{P}_N] \) be an independent set, such that none of its members is \(I_{2^N} \) and let \(A = (A_1, A_2, A_3) \).

1. If \(A_1 A_2 \) and \(A_3 \) are dependent, \(A_1 A_2 = -A_2 A_1 \), and \(2^{N-2} < k \leq 2^{N-1} \), then \(\text{conv} (\Lambda_k(A)) = \Omega_k(A) \);

2. Otherwise, \(\Lambda_k(A) = \Omega_k(A) \).
Caracterization of JHRNR

Let \(\{ A_1, \ldots, A_m \} \subseteq \mathcal{H}_n \) and let \(A = (A_1, \ldots, A_m) \). We know that

\[
\text{conv} \left(\Lambda_k(A) \right) \subseteq \Omega_k(A).
\]

Question

\[
\Omega_k(A) \subseteq \text{conv} \left(\Lambda_k(A) \right).
\]
Caracterization of JHRNR

Let \(\{ A_1, \ldots, A_m \} \subseteq \mathcal{H}_n \) and let \(A = (A_1, \ldots, A_m) \). We know that

\[
\text{conv} (\Lambda_k(A)) \subseteq \Omega_k(A).
\]

Question

\[
\Omega_k(A) \subseteq \text{conv} (\Lambda_k(A)).
\]

Counter example

If \(A_j = \sigma_j \oplus [0], j = 1, 2, 3 \), then \(\Omega_2(A_1, A_2, A_3) = \{ (0, 0, 0) \} \) but \(\Lambda_2(A_1, A_2, A_3) = \emptyset \).
Caracterization of JHRNR

Let \(\{ A_1, \ldots, A_m \} \subseteq [\mathcal{P}_N] \) and let \(A = (A_1, \ldots, A_m) \).

Question

\[\Omega_k(A) \subseteq \text{conv} (\Lambda_k(A)) . \]

Question

\[\Lambda_k(A) \neq \emptyset \implies 0 \in \Lambda_k(A) \]
\[\Omega_k(A) \neq \emptyset \implies 0 \in \Omega_k(A) \]
Maximal abelian sub-group

Let G be an arbitrary sub-group of \mathcal{P}_N, which is not a set of scalar matrices.

- A maximal abelian sub-group S of G is an abelian sub-group of G such that no abelian sub-group of G contains S strictly.
Maximal abelian sub-group

Let G be an arbitrary sub-group of \mathcal{P}_N, which is not a set of scalar matrices.

- A maximal abelian sub-group S of G is an abelian sub-group of G such that no abelian sub-group of G contains S strictly.

- We suppose that a minimal generating set G_0 of G do not contain any scalar matrices; Because if $\alpha I_{2N}, \beta \sigma_{(j_1, \ldots, j_N)} \in G_0$ for some $\alpha, \beta \in \{ \pm 1, \pm i \}$ and $(j_1, \ldots, j_N) \in \{ 0, 1, 2, 3 \}^N$, where $(j_1, \ldots, j_N) \neq (0, \ldots, 0)$, then we can replace αI_{2N} with $\alpha \overline{\beta} \sigma_{(j_1, \ldots, j_N)}$.
Maximal abelian sub-group

Let G be an arbitrary sub-group of \mathcal{P}_N, which is not a set of scalar matrices.

- A maximal abelian sub-group S of G is an abelian sub-group of G such that no abelian sub-group of G contains S strictly.

- We suppose that a minimal generating set G_0 of G do not contain any scalar matrices; Because if $\alpha I_{2N}, \beta \sigma_{(j_1, \ldots, j_N)} \in G_0$ for some $\alpha, \beta \in \{\pm 1, \pm i\}$ and $(j_1, \ldots, j_N) \in \{0, 1, 2, 3\}^N$, where $(j_1, \ldots, j_N) \neq (0, \ldots, 0)$, then we can replace αI_{2N} with $\alpha \beta \sigma_{(j_1, \ldots, j_N)}$.

- Let $|G| = m$. Then G represents an m-tuple of elements in the set $[G]$ with an arbitrary but fixed order.
Maximal abelian sub-group

Lemma

Let G be a sub-group of \mathcal{P}_N and let S_0 be a minimal generating set for a maximal abelian sub-group S of G, where $[S_0] = \{ g_1, \ldots, g_m \}$. Then we can find a unitary U in the Clifford group such that $U^\dagger g_j U = Z_j$, $1 \leq j \leq m$, where $U \in N_{U_n}(\mathcal{P}_N)$.
Maximal abelian sub-group

Lemma

Let G be a sub-group of \mathcal{P}_N and let S_0 be a minimal generating set for a maximal abelian sub-group S of G, where $[S_0] = \{ g_1, \ldots, g_m \}$. Then we can find a unitary U in the Clifford group such that $U^\dagger g_j U = Z_j$, $1 \leq j \leq m$, where $U \in N_{\mathcal{U}_n}(\mathcal{P}_N)$.

$$N_{\mathcal{U}_n}(\mathcal{P}_N) = \{ U \in \mathcal{U}_n : U^\dagger \mathcal{P}_N U = \mathcal{P}_N \}.$$
JHRNR for a sub-group of N-qubit Pauli group

Theorem

Let G be an abelian sub-group of the N-qubit Pauli group \mathcal{P}_N with a minimal generating set G_0, where $|[G_0]| = m$. Then $\Lambda_{2N-m+1}(G) = \emptyset$ and $\Lambda_{2N-m}(G) = \text{conv} (\text{spec}(G))$.

Note that, if $[G_0] = \{Z_1, \ldots, Z_m\}$, then we obtain that $W^\dagger GW = (1, 1, \ldots, 1)I_{2N-m}$, where

$$W = \begin{bmatrix} I_{2N-m} & 0_{2N-m} & \cdots & 0_{2N-m} \end{bmatrix}^\dagger.$$
Theorem

Let G be a non-abelian sub-group of \mathcal{P}_N. Let S be a maximal abelian sub-group of G with a minimal generating set S_0, where $|[S_0]| = m$. Then $\Lambda_{2N-m+1}(G) = \emptyset$ and $\Lambda_{2N-m}(G) \neq \emptyset$.

Note that, if $[S_0] = \{Z_1, \ldots, Z_m\}$, then we obtain that $W^\dagger gW = I_{2N-m}$, for every $g \in [S]$ and $W^\dagger gW = 0_{2N-m}$, for every $g \in [G] \setminus [S]$, where

$$W = \begin{bmatrix} I_{2N-m} & 0_{2N-m} & \cdots & 0_{2N-m} \end{bmatrix}^\dagger.$$
JHRNR for a sub-group of N-qubit Pauli group

Example

Let $N > 2$ and let G be a subgroup of \mathcal{P}_N with minimal generating set G_0. Suppose $[G_0] = \{ \sigma_3^\otimes N, \sigma_1^\otimes N \}$, where $\sigma_i^\otimes N := \sigma_i \otimes \sigma_i \otimes \cdots \otimes \sigma_i$. So

$$[G] = \{ I_{2N}, \sigma_1^\otimes N, \sigma_2^\otimes N, \sigma_3^\otimes N \}.$$

- If N is even, then G is an abelian sub-group of \mathcal{P}_N and so $\Lambda_{2N-2}(G) \neq \emptyset$.
- When N is odd, then G is a non-abelian sub-group of \mathcal{P}_N and we can choose a minimal generating set S_0 for a maximal abelian sub-group of G with $[S_0] = \{ \sigma_3^\otimes N \}$. Thus $\Lambda_{2N-1}(G) \neq \emptyset$.
Contents

1. Operator Approach to Quantum Error Correction
2. Joint Higher-rank Numerical Range
3. Quantum Error Correction of Pauli Channels
4. References
QEC for an abelian sub-group of \mathcal{P}_N

Proposition

Let G be an abelian sub-group of the N-qubit Pauli group \mathcal{P}_N with a minimal generating set G_0, where $N > |[G_0]| = m$. Let \mathcal{E} be a Pauli channel, where its noise operators are members of $[G]$. Then there exists a unitary matrix $U \in \mathcal{U}_n$ such that

$$U^\dagger \mathcal{E} \left(U \left(|0\rangle \langle 0| \otimes \hat{\rho} \right) U^\dagger \right) U = |0\rangle \langle 0| \otimes \hat{\rho},$$

for all $\hat{\rho} \in M_{2^{N-m}}$.

Moreover, there is no 2^{N-m+1}-dimensional QECC for \mathcal{E} and in this sense QEC is optimal.
QEC for an abelian sub-group of \mathcal{P}_N

Note that, if $[G_0] = \{Z_1, \ldots, Z_m\}$, then we have the following

$$\mathcal{E}(\langle 0 | \otimes \hat{\rho}) = \langle 0 | \otimes \hat{\rho} \quad \text{for all } \hat{\rho} \in M_{2^{N-m}},$$

that is a decoherence free subspace QEC.
QEC for a non-abelian sub-group of \mathcal{P}_N

Proposition

Let G be a non-abelian sub-group of \mathcal{P}_N and let S be a maximal abelian sub-group of G with a minimal generating set S_0, where $N > |[S_0]| = m$. Let \mathcal{E} be a Pauli channel, where its noise operators are members of $[G]$. Then there are a density matrix $\sigma \in \mathbb{C}^{2^m \times 2^m}$ and a unitary matrix $R \in \mathcal{U}_n$ such that

$$R^\dagger \mathcal{E} \left(U(|0\rangle \langle 0| \otimes \hat{\rho}) U^\dagger \right) R = \sigma \otimes \hat{\rho}, \quad \text{for all } \hat{\rho} \in M_{2^{N-m}}.$$

Moreover, this QEC is optimal as there is no $(N - m + 1)$-dimensional QECC for \mathcal{E}.
QEC for a non-abelian sub-group of \mathcal{P}_N

If $[S_0] = \{ Z_1, \ldots, Z_m \}$, then $U = I_{2N}$ and $R = \text{diag}(B_0, B_1, \ldots, B_{2^m-1})$. Define $V_1 = \text{diag}(B_0, B_1, \ldots, B_{2^m-1-1})$ and $V_2 = \text{diag}(B_{2^m-1}, \ldots, B_{2^m-1})$. Note that in this case R is product of controlled[0]-V_1 and controlled[1]-V_2 quantum gates.

Moreover, if for every $h \in [G]$, $h = \sigma_{(j_1, \ldots, j_m)} \otimes I_{2N-m}$, then

$$\mathcal{E}(|0\rangle \langle 0| \otimes \hat{\rho}) = \sigma \otimes \hat{\rho} \quad \text{for all} \quad \hat{\rho} \in M_{2^{N-m}},$$

that is a decoherence free sub-system QEC.
QEC for a non-abelian sub-group of \mathcal{P}_N
QEC for a non-abelian sub-group of \mathcal{P}_N

Let G be a sub-group of \mathcal{P}_N with minimal generating set

$$G_0 = \{ Z_1, Z_2, X_2, X_1X_3 \}.$$

We can choose a minimal generating set S_0 for maximal abelian sub-group S of G such that $[S_0] = \{ Z_1, Z_2 \}$. So $[G] = \{ g_1, \ldots, g_{16} \}$, where

$$
\begin{align*}
g_1 &= \sigma_{(0,0,0)} \otimes I_{2^{N-3}}, & g_2 &= \sigma_{(3,0,0)} \otimes I_{2^{N-3}}, & g_3 &= \sigma_{(0,3,0)} \otimes I_{2^{N-3}}, & g_4 &= \sigma_{(3,3,0)} \otimes I_{2^{N-3}}, \\
g_5 &= \sigma_{(0,1,0)} \otimes I_{2^{N-3}}, & g_6 &= \sigma_{(3,1,0)} \otimes I_{2^{N-3}}, & g_7 &= \sigma_{(0,2,0)} \otimes I_{2^{N-3}}, & g_8 &= \sigma_{(3,2,0)} \otimes I_{2^{N-3}}, \\
g_9 &= \sigma_{(1,0,1)} \otimes I_{2^{N-3}}, & g_{10} &= \sigma_{(2,0,1)} \otimes I_{2^{N-3}}, & g_{11} &= \sigma_{(1,3,1)} \otimes I_{2^{N-3}}, & g_{12} &= \sigma_{(2,3,1)} \otimes I_{2^{N-3}}, \\
g_{13} &= \sigma_{(1,1,1)} \otimes I_{2^{N-3}}, & g_{14} &= \sigma_{(2,1,1)} \otimes I_{2^{N-3}}, & g_{15} &= \sigma_{(1,2,1)} \otimes I_{2^{N-3}}, & g_{16} &= \sigma_{(2,2,1)} \otimes I_{2^{N-3}}.
\end{align*}
$$
QEC for a non-abelian sub-group of \mathcal{P}_N

Let

$$\mathcal{E}(\rho) = \sum_{i=1}^{16} p_i g_i \rho g_i^\dagger, \quad \sum_{i=1}^{16} p_i = 1,$$

be a quantum channel, then we obtain that

$$R^\dagger \mathcal{E} (|0\rangle \langle 0| \otimes \hat{\rho}) R = \text{diag}(d_1, d_2, d_3, d_4) \otimes \hat{\rho}, \quad \text{for all } \hat{\rho} \in \mathbb{C}^{2^{N-2} \times 2^{N-2}},$$

where $R = \text{diag}(\sigma_0, \sigma_0, \sigma_1, \sigma_1) \otimes I_{2^{N-3}}$, $d_1 = p_1 + \cdots + p_4$, $d_2 = p_1 + \cdots + p_8$, $d_3 = p_9 + \cdots + p_{12}$, and $d_4 = p_{13} + \cdots + p_{16}$.
Contents

1 Operator Approach to Quantum Error Correction

2 Joint Higher-rank Numerical Range

3 Quantum Error Correction of Pauli Channels

4 References
References

Thanks for your attention.
Bulletin of the Iranian Mathematical Society

Special issue in Honor of Professor Heydar Radjavi’s 80th Birthday

All papers must be submitted via the BIMS online submission system

(http://bims.ims.ir)

Dates for Submissions: March 1, 2014 - December 31, 2014
Refereeing Procedure: By September, 30, 2015
Expected Date of Publication: By December 31, 2015.

1. Laurent Marcoux, University of Waterloo
2. Matjaz Omladic, University of Ljubljana
3. Peter Rosenthal, University of Toronto.
4. Peter Šemrl, University of Ljubljana.
5. Bamdad R. Yahaghi, University of Golestan.
Welcome to the Website of
The Bulletin of the Iranian Mathematical Society

The Bulletin of the Iranian Mathematical Society (BIMS) is a publication of the Iranian Mathematical Society in English. It is published in six issues per year. It publishes original research papers with significant contributions or of broad interest, and invited survey articles. High quality is critically pursued by the editorial body of the bulletin in the reviewing procedure of all submissions.

ISSN: 1017-060X (Print)
ISSN: 1735-8515 (Online)

*Special Issue of BIMS in Honor of Professor Heydar Radjavi’s 80th Birthday

BIMS is an international open access journal. It is indexed in:

Science Citation Index Expanded
Journal Citation Reports/Science Edition
Mathematical Reviews
Zentralblatt MATH
Islamic World Science Citation Center (ISC)
Directory of Open Access Journals